东北大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (11): 37-47.DOI: 10.12068/j.issn.1005-3026.2025.20240187

• 信息与控制 • 上一篇    下一篇

面向多能源发电领域的微调大语言模型EcoPowerGPT

覃文军1(), 郭彦良1,2, 曲睿婷3, 宋青3   

  1. 1.东北大学 计算机科学与工程学院,辽宁 沈阳 110169
    2.应急管理部沈阳消防研究所,辽宁 沈阳 110034
    3.国网辽宁省电力有限公司,辽宁 沈阳 110004
  • 收稿日期:2024-10-21 出版日期:2025-11-15 发布日期:2026-02-07
  • 通讯作者: 覃文军
  • 基金资助:
    国家电网有限公司总部科技项目(5108-202218280A-2-404-XG);国家消防救援局科技计划项目(2025XFZD22)

Fine-Tuned Large Language Model EcoPowerGPT for Multi-energy Power Generation Field

Wen-jun TAN1(), Yan-liang GUO1,2, Rui-ting QU3, Qing SONG3   

  1. 1.School of Computer Science & Engineering,Northeast University,Shenyang 110169,China
    2.Shenyang Fire Science and Technology Research Institute of MEM,Shenyang 110034,China
    3.State Grid Liaoning Electric Power Co. ,Ltd. ,Shenyang 110004,China.
  • Received:2024-10-21 Online:2025-11-15 Published:2026-02-07
  • Contact: Wen-jun TAN

摘要:

针对多能源发电领域因缺乏高质量数据集导致问答(question ansuering,QA)效果欠佳的问题,以及中文回答泛化能力不足的现状,提出了一种基于Llama架构、面向多能源发电领域的微调大语言模型EcoPowerGPT.通过整理多能源发电领域的文献与报告,采用分类过滤和多维度评分方法进行数据处理,进而构建多能源发电微调数据集,并基于该数据集对大语言模型进行指令微调.将EcoPowerGPT在多能源发电QA测试集及单选题测试集上与其他6个对话模型进行对比实验.结果表明,EcoPowerGPT在回答的准确性与全面性上均优于现有对话模型.

关键词: 生成式大语言模型, 问答, 自然语言处理, 多能源发电, 指令微调

Abstract:

To address the issues of poor question answering (QA) performance due to the lack of high-quality datasets in the multi-energy power generation field, as well as the current limitations in the generalization capability of Chinese responses, a fine-tuned large language model called EcoPowerGPT based on the Llama architecture was proposed for the multi-energy power generation field. By organizing literature and reports in the multi-energy power generation field, the model employed classification filtering and multi-dimensional scoring methods for data processing, thereby constructing a fine-tuned dataset for multi-energy power generation. This dataset was then used to fine-tune the large language model. Comparative experiments were conducted between EcoPowerGPT and six other dialogue models on multi-energy power generation QA test sets and test sets of multiple-choice questions with a single correct answer. The results demonstrate that EcoPowerGPT outperforms existing dialogue models in terms of both the accuracy and comprehensiveness of its responses.

Key words: generative large language model, question answering, natural language processing, multi-energy-power generation, instruction fine-tuning

中图分类号: