东北大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (7): 139-147.DOI: 10.12068/j.issn.1005-3026.2025.20240199

• 绿色冶金 • 上一篇    

基于DFT的氢基竖炉内H2和CO在Fe2O3(0001)表面反应的机理

唐珏1,2(), 储满生1,3, 刘西财1,2, 刘杰4   

  1. 1.东北大学 低碳钢铁前沿技术教育部工程研究中心,辽宁 沈阳 110819
    2.东北大学 冶金学院,辽宁 沈阳 110819
    3.东北大学 辽宁省低碳钢铁前沿技术工程研究中心,辽宁 沈阳 110819
    4.东北大学 资源与土木工程学院,辽宁 沈阳 110819
  • 收稿日期:2024-10-30 出版日期:2025-07-15 发布日期:2025-09-24
  • 通讯作者: 唐珏
  • 作者简介:储满生(1973—),男,安徽岳西人,东北大学教授,博士生导师.
  • 基金资助:
    国家自然科学基金重点基金资助项目(U23A20608);辽宁省科技计划联合项目(重点研发计划项目)(2023JH2/101800058);河北省科技计划项目(23314601L);高钛型磁铁矿(PMC矿、朝阳钒钛矿及海砂矿)氢基竖炉还原-电炉熔分技术研究与应用项目(HG2023239)

Mechanisms of H2 and CO Reaction on the Fe2O3(0001) Surface in Hydrogen-Based Shaft Furnace Based on DFT

Jue TANG1,2(), Man-sheng CHU1,3, Xi-cai LIU1,2, Jie LIU4   

  1. 1.Engineering Research Center of Frontier Technologies for Low-Carbon Steelmaking,Ministry of Education,Northeastern University,Shenyang 110819,China
    2.School of Metallurgy,Northeastern University,Shenyang 110819,China
    3.Liaoning Low-Carbon Steelmaking Technology Engineering Research Center,Northeastern University,Shenyang 110819,China
    4.School of Resources & Civil Engineering,Northeastern University,Shenyang 110819,China.
  • Received:2024-10-30 Online:2025-07-15 Published:2025-09-24
  • Contact: Jue TANG

摘要:

氢基竖炉工艺可显著减少CO2排放,是钢铁工业绿色低碳发展的有效途径.本研究基于密度泛函理论(DFT),深入研究了氢基竖炉冶炼过程中H2和CO与Fe2O3的反应机理.结果表明:H2分子最稳定吸附构型的吸附能为-1.65 eV,CO分子为-2.10 eV,CO分子吸附占优.H2分子反应时的能垒为0.64 eV,CO分子为1.40 eV,H2分子与Fe2O3反应在动力学上占优.升高温度虽然不利于气体分子的吸附,但有利于还原反应的进行,因此升高温度可以弥补H2分子吸附及反应在热力学上的劣势.对于富氢或纯氢竖炉,可以提高操作压力,同时适当提高还原温度以加快反应速率,但应确保吸附效率.

关键词: 氢基竖炉, 密度泛函理论(DFT), Fe2O3, 反应机理, 吸附能, 能垒

Abstract:

Hydrogen-based shaft furnace process can significantly reduce CO2 emission, which is an effective way for low-carbon and green development of iron and steel industry. In this study, the reaction mechanism of H2 and CO with Fe2O3 in the hydrogen-based shaft furnace reduction process was investigated in depth based on density functional theory(DFT). The results show that the most stable adsorption configuration of H2 molecule has an adsorption energy of -1.65 eV and the CO molecule has an adsorption energy of -2.10 eV, which is favorable for the adsorption of CO molecule. The energy barrier of H2 molecule for the reaction is 0.64 eV, and CO molecule has an energy barrier of 1.40 eV, which is favorable for the reaction of H2 molecule with Fe2O3 in the kinetic. Increasing temperature is unfavorable for the adsorption of gas molecules, but favoring the kinetics of reduction reaction. And increasing temperature can compensate for the thermodynamic disadvantage of the adsorption and reaction of H2 molecules. The operating pressure should be increased, while the reduction temperature can be increased appropriately to accelerate the reaction rate, but the adsorption efficiency should be ensured for hydrogen-rich or pure hydrogen shaft furnace.

Key words: hydrogen-based shaft furnace, density functional theory (DFT), Fe2O3, reaction mechanism, adsorption energy, energy barrier

中图分类号: