[1] |
上官方钦, 段志伟, 崔志峰, 等. 新形势下中国钢铁行业碳达峰碳中和若干问题探讨[J]. 钢铁, 2024, 59(9): 22-31.
|
|
Shangguan Fang-qin, Duan Zhi-wei, Cui Zhi-feng, et al. Discussion on several issues of carbon peak and carbon neutrality in China’s steel industry under new situation[J]. Iron & Steel, 2024, 59(9): 22-31.
|
[2] |
朱彤, 李建. 铁矿石氢还原行为研究[J]. 钢铁, 2024, 59(9): 84-90.
|
|
Zhu Tong, Li Jian. Study on hydrogen reduction behavior of iron ore[J]. Iron & Steel, 2024, 59(9): 84-90.
|
[3] |
Prusti P, Rath S S, Dash N, et al. Pelletization of hematite and synthesized magnetite concentrate from a banded hematite quartzite ore: a comparison study[J]. Advanced Powder Technology, 2021, 32(10): 3735-3745.
|
[4] |
刘西财, 石恩泽, 赵子川, 等. 氢基竖炉条件下制备不同金属化率球团研究[J]. 烧结球团, 2022, 47(1): 58-64, 126.
|
|
Liu Xi-cai, Shi En-ze, Zhao Zi-chuan, et al. Research on preparation of pellets with different metallization rates under hydrogen-based shaft furnace condition[J]. Sintering and Pelletizing, 2022, 47(1): 58-64, 126.
|
[5] |
Zhao Z C, Tang J, Chu M S, et al. Direct reduction swelling behavior of pellets in hydrogen-based shaft furnaces under typical atmospheres[J]. International Journal of Minerals, Metallurgy and Materials, 2022, 29(10): 1891-1900.
|
[6] |
Feng J G, Tang J, Chu M S, et al. Sticking behavior of pellets during direct reduction based on hydrogen metallurgy: an optimization approach using response surface methodology[J]. Journal of Sustainable Metallurgy, 2023, 9(3): 1139-1154.
|
[7] |
Liu Z J, Lu S F, Wang Y Z, et al. Study on optimization of reduction temperature of hydrogen-based shaft furnace: numerical simulation and multi-criteria evaluation[J]. International Journal of Hydrogen Energy, 2023, 48(42): 16132-16142.
|
[8] |
Petrushenko I K, Petrushenko K B. Physical adsorption of hydrogen molecules on single-walled carbon nanotubes and carbon-boron-nitrogen heteronanotubes: a comparative DFT study[J]. Vacuum, 2019, 167: 280-286.
|
[9] |
Yu C Y, Li D H, Wang D Y, et al. Three-dimensional triptycene-functionalized covalent organic frameworks with hea net for hydrogen adsorption[J]. Angewandte Chemie (International Edition), 2022, 61(13): e202117101.
|
[10] |
Meng Y, Liu X Y, Bai M M, et al. Adsorption or deoxidation of H2 interacted with Fe3O4 surface under different H coverage: a DFT study[J]. Applied Surface Science, 2020, 502: 144097.
|
[11] |
Huang L, Tang M C, Fan M H, et al. Density functional theory study on the reaction between hematite and methane during chemical looping process[J]. Applied Energy, 2015, 159: 132-144.
|
[12] |
Liu A M, Yang Y N, Kong D Z, et al. DFT study of the defective carbon materials with vacancy and heteroatom as catalyst for NRR[J]. Applied Surface Science, 2021, 536: 147851.
|
[13] |
Chen B X, Wang D, Duan X Z, et al. Charge-tuned CO activation over a χ-Fe5C2 Fischer-Tropsch catalyst[J]. ACS Catalysis, 2018, 8(4): 2709-2714.
|
[14] |
Daga Y, Kizilkaya A C. Mechanistic insights into the effect of sulfur on the selectivity of cobalt-catalyzed Fischer-Tropsch synthesis: a DFT study[J]. Catalysts, 2022, 12(4): 425.
|
[15] |
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996, 54(16): 11169-11186.
|
[16] |
Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15-50.
|
[17] |
Blöchl P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50(24): 17953-17979.
|
[18] |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
|
[19] |
Dudarev S L, Botton G A, Savrasov S Y, et al. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study[J]. Physical Review B, 1998, 57(3): 1505-1509.
|
[20] |
Ueda D K, Ohyama D J, Sawabe D K, et al. Structure-activity relationship of iron oxides for NO reduction in the presence of C3H6, CO, and O2 [J]. Chemistry-A European Journal, 2019, 25(61): 13964-13971.
|
[21] |
Grimme S, Antony J, Ehrlich S, et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu[J]. The Journal of Chemical Physics, 2010, 132(15): 154104.
|
[22] |
Methfessel M, Paxton A T. High-precision sampling for Brillouin-zone integration in metals[J]. Physical Review B, 1989, 40(6): 3616-3621.
|
[23] |
Henkelman G, Jónsson H. A dimer method for finding saddle points on high dimensional potential surfaces using only first derivatives[J]. The Journal of Chemical Physics, 1999, 111(15): 7010-7022.
|
[24] |
Lin C F, Qin W, Dong C Q. H2S adsorption and decomposition on the gradually reduced α-Fe2O3(001) surface: a DFT study[J]. Applied Surface Science, 2016, 387: 720-731.
|
[25] |
Finger L W, Hazen R M. Crystal structure and isothermal compression of Fe2O3, Cr2O3, and V2O3 to 50 kbars[J]. Journal of Applied Physics, 1980, 51(10): 5362-5367.
|
[26] |
王子明. 焦炭和铁氧化物在高炉内气固反应机理[D]. 北京: 北京科技大学, 2021.
|
|
Wang Zi-ming. Gas-solid reaction mechanism of coke and iron oxide in blast furnace[D]. Beijing: University of Science and Technology Beijing, 2021.
|
[27] |
Souvi S M O, Badawi M, Paul J F, et al. A DFT study of the hematite surface state in the presence of H2, H2O and O2 [J]. Surface Science, 2013, 610: 7-15.
|
[28] |
Huber K P, Herzberg G. Molecular spectra and molecular structure. IV. constants of diatomic molecules[M]. [S. l.]:Van Nostrand Reinhold Co., 1979.
|
[29] |
Xue P Y, Fu Z M, Chu X L, et al. Density functional theory study on the interaction of CO with the Fe3O4(001) surface[J]. Applied Surface Science, 2014, 317: 752-759.
|
[30] |
鲁峰. 流态化直接还原炼铁过程中颗粒黏结与调控的跨尺度关系的研究[D]. 重庆: 重庆大学,2019.
|
|
Lu Feng. Multiscale study on the particle agglomeration and control of fluidized bed in the direct reduction process[D]. Chongqing: Chongqing University, 2019.
|