东北大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (9): 17-24.DOI: 10.12068/j.issn.1005-3026.2025.20249030

• 信息与控制 • 上一篇    下一篇

多目标投资组合优化问题的学习型NSGA-II

朱珠1(), 娄航宇2   

  1. 1.辽宁大学 信息学院,辽宁 沈阳 110036
    2.东北大学 信息科学与工程学院,辽宁 沈阳 110819
  • 收稿日期:2024-05-26 出版日期:2025-09-15 发布日期:2025-12-03
  • 通讯作者: 朱珠
  • 作者简介:朱 珠(1983—),女,贵州赫章人,辽宁大学副教授.
  • 基金资助:
    国家自然科学基金资助项目(72102096)

Learning-Based NSGA-Ⅱ for Multi-objective Portfolio Optimization Problems

Zhu ZHU1(), Hang-yu LOU2   

  1. 1.School of Information,Liaoning University,Shenyang 110036,China
    2.School of Information Science & Engineering,Northeastern University,Shenyang 110819,China.
  • Received:2024-05-26 Online:2025-09-15 Published:2025-12-03
  • Contact: Zhu ZHU

摘要:

针对快速非支配排序遗传算法(NSGA-Ⅱ)在求解投资组合问题时存在分散性不足和约束处理能力差的问题,提出了一种基于聚类和自适应可行性修复策略的学习型改进NSGA-Ⅱ算法(INSGA-Ⅱ)用于求解多目标投资组合问题.在该算法中,通过聚类学习改进种群的分散性,通过自适应修复保证新生成的解均为可行解,从而改进算法的分散性和提高算法的收敛速度.此外,对交叉及变异后的种群分别进行保存,并将其与父代种群合并以提高生成子代种群的选择压力及质量.实验结果表明,所提算法具有更高的搜索性能和稳定性,能够有效求解多目标投资组合问题.

关键词: 多目标优化, NSGA-II, 投资组合优化问题, 聚类学习, 自适应修复

Abstract:

To address the issues of insufficient diversity and poor constraint-handling capability in the non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ) when solving portfolio optimization problems, a learning-based improved NSGA-Ⅱ algorithm (INSGA-Ⅱ) incorporating clustering and an adaptive feasibility repair strategy for multi-objective portfolio optimization was proposed. In the proposed algorithm, clustering learning was employed to enhance population diversity, while adaptive repair ensured that newly generated solutions were feasible, thereby improving the algorithm's diversity and convergence speed. Additionally, the populations after crossover and mutation were preserved separately and merged with the parent population to increase the selection pressure and quality of offspring generation. Experimental results demonstrate that the proposed algorithm exhibits superior search performance and stability, effectively solving multi-objective portfolio optimization problems.

Key words: multi-objective optimization, NSGA-Ⅱ, portfolio optimization problem, clustering learning, adaptive repair

中图分类号: