东北大学学报(自然科学版) ›› 2005, Vol. 26 ›› Issue (6): 603-605.DOI: -

• 论著 • 上一篇    下一篇

矩阵B~TA~(-1)B的特征值估计及预条件处理

李铮;邵新慧;李长军   

  1. 东北大学信息科学与工程学院;东北大学理学院;东北大学理学院 辽宁沈阳 110004东北大学理学院辽宁沈阳 110004
  • 收稿日期:2013-06-24 修回日期:2013-06-24 出版日期:2005-06-15 发布日期:2013-06-24
  • 通讯作者: Li, Z.
  • 作者简介:-
  • 基金资助:
    教育部骨干教师基金资助项目

Eigenvalue estimation and preconditioning for BTA-1B

Li, Zheng (1); Shao, Xin-Hui (2); Li, Chang-Jun (2)   

  1. (1) School of Information Science and Engineering, Northeastern University, Shenyang 110004, China; (2) School of Sciences, Northeastern University, Shenyang 110004, China
  • Received:2013-06-24 Revised:2013-06-24 Online:2005-06-15 Published:2013-06-24
  • Contact: Li, Z.
  • About author:-
  • Supported by:
    -

摘要: 在矩阵A为对称正定和矩阵B为列满秩的假设下,研究矩阵BTA-1B的特征值上下界估计,进而给出了BTA-1B的谱条件数的估计·基于以上论述,论证了当矩阵A的条件较好时矩阵Q=BTB可作为矩阵BTA-1B的预条件矩阵·在数值实验中,采用预条件共轭梯度算法(PCG)对Stokes方程求解,实验结果表明Q=BTB确实是一类有效的预条件矩阵·这一结果也和其他文献的数值结果相吻合·

关键词: 特征值, 谱条件数, 预条件矩阵, 广义SOR算法, 预条件共轭梯度算法, Stokes方程

Abstract: The estimation for the bounds of the eigenvalues of matrix BTA-1B is studied on the assumption that the matrix A is symmetric and positive definite (SPD) and B has full column rank. Furthermore, the estimation for the spectral condition number of BTA-1B is obtained. Based on what was concluded above, it is proved that Q=BTB is a good preconditioner for matrix BTA -1B provided A is well conditioned. In the numerical experiment, the Stokes equation is solved by preconditioned conjugate gradient method (PCG). The experimental result demonstrates that Q=BTB is indeed an effective preconditioner. This result is consistent to the numerical results of some references.

中图分类号: