东北大学学报(自然科学版) ›› 2009, Vol. 30 ›› Issue (6): 761-764.DOI: -

• 论著 •    下一篇

基于Elman神经网络集成的诺西肽发酵过程建模

牛大鹏;王福利;何大阔;贾明兴;   

  1. 东北大学流程工业综合自动化教育部重点实验室;东北大学信息科学与工程学院;
  • 收稿日期:2013-06-22 修回日期:2013-06-22 出版日期:2009-06-15 发布日期:2013-06-22
  • 通讯作者: Niu, D.-P.
  • 作者简介:-
  • 基金资助:
    国家自然科学基金资助项目(60774068);;

Nosiheptide fermentation process modeling based on Elman neural network ensemble

Niu, Da-Peng (1); Wang, Fu-Li (1); He, Da-Kuo (2); Jia, Ming-Xing (2)   

  1. (1) Key Laboratory of Integrated Automation of Process Industry Ministry of Education, Northeastern University, Shenyang 110004, China; (2) School of Information Science and Engineering, Northeastern University, Shenyang 110004, China
  • Received:2013-06-22 Revised:2013-06-22 Online:2009-06-15 Published:2013-06-22
  • Contact: Niu, D.-P.
  • About author:-
  • Supported by:
    -

摘要: 针对单神经网络模型外推效果不理想、泛化能力较差的缺点,将神经网络集成用于诺西肽发酵过程的建模.采用Bagging技术进行重复取样用于个体神经网络的训练,结论生成时采用加权平均法,各子网络的权重利用差分进化算法来确定.个体神经网络选用典型的动态神经网络Elman网络,通过对多个Elman神经网络模型的输出进行融合,建立了基于神经网络集成的诺西肽发酵产物浓度模型.最后将所建立的模型与基于单神经网络的模型进行了比较,结果说明该模型具有更高的精度和泛化能力.

关键词: 诺西肽发酵, 建模, 神经网络集成, 差分进化算法, Elman神经网络

Abstract: In order to improve the poor extrapolation effect and generalizability of the single neural network, the neural network ensemble is used to develop the model of Nosiheptide fermentation process. Each individual network is trained on a bootstrap re-sampling replication of the original training data through the Bagging approach. Then, outputs of the individual neural networks are combined to form an overall output of neural network ensemble through the weighted average method, in which the weight of each individual network is determined by the differential evolution algorithm. The Elman network, a typical dynamic neural network, is applied in each individual network. The model of Nosiheptide fermentation product concentration, based on the neural network ensemble, is thus developed through combination of outputs from multi-Elman neural networks. This model is compared with the single neural network model to illustrate its high accuracy and generalizability.

中图分类号: