东北大学学报(自然科学版) ›› 2011, Vol. 32 ›› Issue (7): 935-938.DOI: -

• 论著 • 上一篇    下一篇

Kalman滤波在WSN定位评估中的应用

赵海;张宽;朱剑;刘伟;   

  1. 东北大学信息科学与工程学院;
  • 收稿日期:2013-06-19 修回日期:2013-06-19 发布日期:2013-04-04
  • 通讯作者: -
  • 作者简介:-
  • 基金资助:
    高等学校科技创新工程重大项目培育资金资助项目(708026)

Application of Kalman filtering in localization estimation for WSN

Zhao, Hai (1); Zhang, Kuan (1); Zhu, Jian (1); Liu, Wei (1)   

  1. (1) School of Information Science and Engineering, Northeastern University, Shenyang 110819, China
  • Received:2013-06-19 Revised:2013-06-19 Published:2013-04-04
  • Contact: Zhang, K.
  • About author:-
  • Supported by:
    -

摘要: 针对无线传感器网络实际应用中定位信号的不稳定性,单纯从定位算法角度改进已很难使定位精度有一个新的突破.为此在节点测距过程中提出了改进的自适应对数正态阴影模型;在坐标评估过程中采用了Kalman滤波方法,并利用马尔可夫过程建立移动节点的状态方程,结合未知节点状态数据的测量值估计出坐标位置的最优值.最后将上述两个过程的改进引入到现有的三角形定位算法中,进行引入前后性能对比.实验结果证明,改进的自适应对数阴影模型提高了测距模型的自适应性及测距精度,Kalman滤波和马尔可夫过程的引入减小了移动节点的定位误差.

关键词: 无线传感器网络, 定位评估, 对数正态阴影模型, 马尔可夫过程, Kalman滤波

Abstract: Focusing on the instability of the actual signal in wireless sensor networks (WSNs), the simply algorithm improvement cannot meet the requirement of localization precision. An improved self-adaptive log-normal shadow model was proposed in distance measuring. Kalman filter and Markov process were adopted in coordinate estimation. The state equations were established and combined with the states of the measured coordinates to estimate the optimal values of coordinates. Finally, these two improved processes were introduced in the existing triangle localization algorithm. The experimental results show that the improved self-adaptive log-normal shadow model enhances the adaptability and accuracy of the distance-measuring model, and Kalman filter and Markov process reduce localization errors.

中图分类号: