东北大学学报(自然科学版) ›› 2012, Vol. 33 ›› Issue (6): 793-796.DOI: -
赵建喆;王大可;李凯;朱志良;
Zhao, Jian-Zhe (1); Wang, Da-Ke (2); Li, Kai (2); Zhu, Zhi-Liang (1)
摘要: 工业生产的质量预测及故障诊断建模过程中所涉及的特征数目大、复杂性高、非线性突出,造成了模型维数过高、时间复杂度高、计算精度下降.针对上述问题,提出了一种基于核主成分分析和粗糙集的特征提取方法,首先使用核主成分分析进行特征提取,再对提取出的特征用粗糙集进行约简,介绍了该方法的原理和具体实现步骤.并以某玻璃厂锡槽作业工艺为背景进行仿真实验,应用实际生产数据建立支持向量机的故障诊断模型,将应用核主成分分析、粗糙集及所提方法提取出的特征输入SVM诊断模型.对比三种方法的实验结果表明,基于核主成分分析和粗糙集的特征提取方法提取出的特征更优.
中图分类号: