东北大学学报:自然科学版 ›› 2019, Vol. 40 ›› Issue (2): 295-300.DOI: 10.12068/j.issn.1005-3026.2019.02.027
曹德芳, 刘柏池
CAO De-fang, LIU Bai-chi
摘要: 利用我国资本市场的面板数据,选取2006—2015年公布的财务报表欺诈公司作为样本公司,以1∶1比例配比非财务欺诈公司,对27个指标(包括财务指标和非财务指标)进行分析,然后通过独立性检验对指标进行降维处理,最终保留8个建模指标.分别利用网格搜索算法、遗传算法和粒子群算法进行支持向量机模型的参数寻优,基于上述不同算法建立了三个支持向量机财务欺诈识别模型.最后,比较三个模型的运行效果,结果表明,通过粒子群算法寻找最优参数效果最好,据此建立的支持向量机模型可以很好地识别出财务欺诈公司样本.
中图分类号: