东北大学学报:自然科学版 ›› 2015, Vol. 36 ›› Issue (11): 1553-1557.DOI: 10.12068/j.issn.1005-3026.2015.11.008

• 信息与控制 • 上一篇    下一篇

基于潜在半径优化策略的数字图像抠图算法

赵海, 雷凯茹, 朱宏博, 朴春鹤   

  1. (东北大学 信息科学与工程学院, 辽宁 沈阳110819)
  • 收稿日期:2014-10-17 修回日期:2014-10-17 出版日期:2015-11-15 发布日期:2015-11-10
  • 通讯作者: 赵海
  • 作者简介:赵海(1959-),男,辽宁沈阳人,东北大学教授,博士生导师.
  • 基金资助:
    国家自然科学基金资助项目(60973022).

A Digital Image Matting Algorithm Based on the Optimization Strategy of Latent Radius

ZHAO Hai, LEI Kai-ru, ZHU Hong-bo, PIAO Chun-he   

  1. School of Information Science & Engineering, Northeastern University, Shenyang 110819, China.
  • Received:2014-10-17 Revised:2014-10-17 Online:2015-11-15 Published:2015-11-10
  • Contact: LEI Kai-ru
  • About author:-
  • Supported by:
    -

摘要: 针对目标图像利用导向滤波算法进行图像抠图时参数需要根据不同图像进行人为设定的问题,提出了一种利用隐藏的支持向量机LSVM(latent support vector machine)自动设定参数的潜在半径优化的数字图像抠图算法.该方法首先是应用LSVM潜在性的思想,利用已知数据库模板训练输入目标图像的样本集,再利用样本集将导向图像和二值图像以不同半径进行分块并进行判定,确定半径值,从而能够自动产生合理参数.最后利用导向滤波器对图像进行抠图,从而优化抠图算法,最终实现抠图算法的智能化和灵活化.

关键词: 导向滤波器, 图像抠图, LSVM, 目标图像, 训练样本集

Abstract: Due to parameters is needed to be set depending on the issue of human goal-oriented to filter matting algorithms, a classifier was proposed based on component detection called LSVM (latent support vector machine). The parameters of guided radius could be automatically set so as to optimize algorithm. Firstly, for determining the radius, a potential idea of LSVM was applied which using the known database templates to train the input samples of the target image, then the sample set of the guided image and the binary image were divided into blocks with different radius which could automatically generate the reasonable parameters and optimize algorithm. At last, guided filter was used to advance matting and the intelligent and flexible of the matting algorithm was achiered.

Key words: guided filter, image matting, LSVM(latent support verctor machine), target image, training sample set

中图分类号: