东北大学学报:自然科学版 ›› 2017, Vol. 38 ›› Issue (12): 1686-1690.DOI: 10.12068/j.issn.1005-3026.2017.12.004

• 信息与控制 • 上一篇    下一篇

基于GPS轨迹数据的混合多步Markov位置预测

李昇智, 乔建忠, 林树宽, 杨迪   

  1. (东北大学 计算机科学与工程学院, 辽宁 沈阳110169)
  • 收稿日期:2016-06-16 修回日期:2016-06-16 出版日期:2017-12-15 发布日期:2018-01-02
  • 通讯作者: 李昇智
  • 作者简介:李昇智(1975-), 男, 辽宁桓仁人, 东北大学博士研究生; 乔建忠(1964-),男,辽宁兴城人,东北大学教授,博士生导师; 林树宽(1966-),女,吉林长春人,东北大学教授.
  • 基金资助:
    国家自然科学基金资助项目(61272177).

Hybrid Multi-step Markov Location Prediction Based on GPS Trajectory Data

LI Sheng-zhi, QIAO Jian-zhong, LIN Shu-kuan, YANG Di   

  1. School of Computer Science & Engineering, Northeastern University, Shenyang 110169, China.
  • Received:2016-06-16 Revised:2016-06-16 Online:2017-12-15 Published:2018-01-02
  • Contact: QIAO Jian-zhong
  • About author:-
  • Supported by:
    -

摘要: 随着移动设备和定位技术的广泛应用,基于位置服务成为研究热点,位置预测是其重要研究内容.基于GPS轨迹数据,对位置预测方法进行研究.Markov模型可以较好地表示时序数据,因此可较好地用于位置建模和预测.在基于Markov建模的位置预测中,1阶Markov模型存在轨迹信息利用不充分、预测准确率低的问题;而多阶Markov模型存在状态空间急剧膨胀的问题.针对这些问题,提出了基于混合多步Markov模型的位置预测方法,在将原始GPS轨迹转化为区域轨迹的基础上,对各多步模型进行融合,提出了基于Adaboost框架的各多步模型影响系数的生成方法,在保证状态空间不变的情况下提高了预测准确性.真实数据集上的实验验证了所提位置预测方法的有效性.

关键词: 位置预测, 混合多步Markov模型, 区域轨迹, Markov模型的影响系数, 地图区域划分

Abstract: Recently, with the wide use of mobile devices and location technology, LBS (location based service) becomes research hotspot. Location prediction is a primary research aspect of LBS. The location prediction based on GPS trajectories was researched. Markov model can represent temporal data well, so it was used in location modeling and prediction. In Markov based location prediction, 1-order Markov model cannot employ trajectory data sufficiently, so the prediction precision is low. The state space of multi-order Markov model will increase rapidly with the order number increasing. For these problems, a novel location prediction method was proposed based on hybrid multi-step Markov model, which transformed the original GPS trajectories into region trajectories. On this basis, all multi-step Markov models were merged. In the course of it, an Adaboost frame based method generating the influence coefficient of each multi-step model was presented. So, the prediction precision was improved, and the state space did not increase. The experiments on real GPS trajectory data show the effectiveness of the location prediction method proposed by the paper.

Key words: location prediction, hybrid multi-step Markov model, region trajectory, the influence coefficient of Markov model, map region partitioning

中图分类号: