东北大学学报:自然科学版 ›› 2018, Vol. 39 ›› Issue (12): 1754-1758.DOI: 10.12068/j.issn.1005-3026.2018.12.016

• 资源与土木工程 • 上一篇    下一篇

东鞍山含碳酸盐铁矿石悬浮磁化焙烧试验

余建文1, 韩跃新1, 李艳军1, 储满生2   

  1. (1. 东北大学 资源与土木工程学院, 辽宁 沈阳110819; 2. 东北大学 冶金学院, 辽宁 沈阳110819)
  • 收稿日期:2017-09-06 修回日期:2017-09-06 出版日期:2018-12-15 发布日期:2018-12-19
  • 通讯作者: 余建文
  • 作者简介:余建文(1988-),男,江西余干人,东北大学博士后研究人员; 韩跃新 (1961-),男,内蒙古赤峰人,东北大学教授,博士生导师; 储满生(1973-),男,安徽岳西人,东北大学教授,博士生导师.冯明杰(1971-), 男, 河南禹州人, 东北大学副教授; 王恩刚(1962-), 男, 辽宁沈阳人, 东北大学教授,博士生导师.
  • 基金资助:
    国家自然科学基金资助项目(51171041).国家自然科学基金资助项目(51734005,51674064,51674065); 中国博士后科学基金资助项目(2018M631812); 东北大学博士后科研基金资助项目(20180316).

Test on Fluidized Magnetization Roasting of Donganshan Carbonate-Bearing Iron Ore

YU Jian-wen1, HAN Yue-xin1, LI Yan-jun1, CHU Man-sheng2   

  1. 1. School of Resources & Civil Engineering, Northeastern University, Shenyang 110819, China; 2. School of Metallurgy, Northeastern University, Shenyang 110819, China.
  • Received:2017-09-06 Revised:2017-09-06 Online:2018-12-15 Published:2018-12-19
  • Contact: HAN Yue-xin
  • About author:-
  • Supported by:
    -

摘要: 介绍了一种半工业试验用悬浮焙烧设备,并考察了焙烧温度、还原气体CO及流化气体N2用量对东鞍山含碳酸盐铁矿石预富集粗精矿悬浮焙烧效果的影响.试验结果表明,在焙烧温度540℃,还原气体CO用量4m3/h及流化气体N2用量2m3/h的条件下,焙烧物料经磨矿-磁选后可获得铁品位66.1%,回收率91.2%的铁精矿.铁的化学物相、光学显微结构及穆斯堡尔谱分析表明,经悬浮焙烧后弱磁性的菱铁矿和赤铁矿转化为了强磁性的磁铁矿,部分结晶粒度较粗(>100μm)的赤铁矿仅颗粒表面转变为磁铁矿,但这种Fe2O3@Fe3O4核壳结构的新生磁铁矿由于磁性较强,在后续磁选过程中依然能够得到有效的回收,并不会影响分选效果.

关键词: 含碳酸盐铁矿, 悬浮磁化焙烧, 物相演变, 磁选

Abstract: A pilot-scale fluidized magnetization roasting reactor was introduced and used to study the effects of roasting temperature, flow rates of reducing gas CO and fluidizing gas N2 on magnetization roasting performance of the pre-concentrate from Donganshan iron ore. The results show that a high-grade ground magnetic concentrate of 66.1% iron with an iron recovery of 91.2% can be obtained from the pre-concentrate after roasting at 540℃ with a gas mixture of CO 4m3/h and N2 2m3/h. The iron chemical phase, optical microstructure, and Mossbauer spectrum analyses indicate that weakly magnetic siderite and hematite can be converted to ferromagnetic magnetite successfully. The coarse hematite particles(>100μm) partly transformed into magnetite, while such particles with a Fe2O3@Fe3O4 core-shell structure can also be effectively recovered by subsequent magnetic separation after liberating from gangue minerals due to their strong magnetism.

Key words: carbonate-bearing iron ore, fluidized magnetization roasting, phase conversion, magnetic separation

中图分类号: