东北大学学报:自然科学版 ›› 2018, Vol. 39 ›› Issue (7): 913-917.DOI: 10.12068/j.issn.1005-3026.2018.07.001

• 信息与控制 •    下一篇

基于样本均值和中位值的粒子群优化定位算法

黄越洋1,2, 井元伟1, 张嗣瀛1, 石元博1   

  1. (1. 东北大学 信息科学与工程学院, 辽宁 沈阳110819; 2. 辽宁石油化工大学 信息与控制工程学院, 辽宁 抚顺113001)
  • 收稿日期:2017-03-21 修回日期:2017-03-21 出版日期:2018-07-15 发布日期:2018-07-11
  • 通讯作者: 黄越洋
  • 作者简介:黄越洋(1981-),女,辽宁抚顺人,东北大学博士研究生; 井元伟(1956-),男,辽宁沈阳人,东北大学教授,博士生导师; 张嗣瀛(1925-),男,山东章丘人,东北大学教授,博士生导师,中国科学院院士.冯明杰(1971-), 男, 河南禹州人, 东北大学副教授; 王恩刚(1962-), 男, 辽宁沈阳人, 东北大学教授,博士生导师.
  • 基金资助:
    国家自然科学基金资助项目(61473073,61773108).国家自然科学基金资助项目(51171041).

Particle Swarm Optimization Localization Algorithm Based on Sample Mean and Median

HUANG Yue-yang1,2, JING Yuan-wei1, ZHANG Si-ying1, SHI Yuan-bo1   

  1. 1. School of Information Science & Engineering, Northeastern University, Shenyang 110819, China; 2. School of Information and Control Engineering, Liaoning Shihua University, Fushun 113001, China.
  • Received:2017-03-21 Revised:2017-03-21 Online:2018-07-15 Published:2018-07-11
  • Contact: HUANG Yue-yang
  • About author:-
  • Supported by:
    -

摘要: 针对室内LOS/NLOS混合环境,提出基于假设检验的方法确定NLOS状态,并采用具有收缩因子的粒子群优化算法进行定位.在采样值存在异常情况时,样本中位值性能优于样本均值.因此,在LOS和NLOS状态下,分别采用样本均值和样本中位值建立最小平方误差代价函数.为了增强算法的全局和局部搜索能力,在粒子群优化算法的基础上引入收缩因子.仿真实验表明,在NLOS遮挡比较严重的情况下,所提出的基于样本均值和样本中位值改进的粒子群优化定位算法较只采用样本均值改进的粒子群优化算法和一般的粒子群优化算法定位精度高.

关键词: 定位, 非视距, 样本均值, 样本中值, 粒子群优化

Abstract: The non-line-of-sight(NLOS)state was determined by the method of hypothesis testing for indoor line-of-sight/non-line-of-sight (LOS/NLOS) hybrid environment. And particle swarm optimization algorithm with shrinkage factor was used to locate. When the sampling value was abnormal, the performance of sample median was better than sample mean. Minimum square error cost functions of the sample mean and sample median were established in LOS and NLOS state. In order to enhance the global and local search ability of the algorithm, the shrinkage factor was introduced on the basis of particle swarm optimization algorithm. Simulation results show that the improved particle swarm optimization algorithm based on sample mean and median (IPSOSMM)has higher localization accuracy than that of the improved particle swarm optimization algorithm based on sample mean (IPSOSM)and the general particle swarm optimization algorithm when the NLOS block is serious.

Key words: localization, non-line of sight, sample mean, sample median, particle swarm optimization

中图分类号: