东北大学学报:自然科学版 ›› 2018, Vol. 39 ›› Issue (7): 970-975.DOI: 10.12068/j.issn.1005-3026.2018.07.012
王巧云, 郑念祖
WANG Qiao-yun, ZHENG Nian-zu
摘要: 为了提高拉曼光谱定量分析模型的准确性以及稳健性,提出了一种新的样本选择算法——KM法.实验中以40组葡萄酒光谱为分析对象,将KM法与传统的RS,KS,SPXY样本选择算法相比较.实验结果表明: KM法获得的|RMSEP-RMSEC|要优于其他三种方法,剩余预测偏差(RPD)存在显著性差异,说明KM法具有很好的预测准确度.同时,针对BP神经网络易陷入局部极值的问题,将粒子群优化算法用于优化人工神经网络的参数(PSO-ANN),通过与遗传算法、人工鱼群算法及混合蛙跳算法比较,发现PSO-ANN较之于其他三种方法,能够提高BP神经网络泛化性能,具有收敛速度快、稳健性强及预测精度高等优势.
中图分类号: