东北大学学报:自然科学版 ›› 2019, Vol. 40 ›› Issue (1): 115-120.DOI: 10.12068/j.issn.1005-3026.2019.01.022
王述红, 任艺鹏, 邢观华
WANG Shu-hong, REN Yi-peng, XING Guan-hua
摘要: Elman网络在边坡位移序列预测的应用中,对于网络隐含层神经元个数、阈值的选取没有具体的定论,且收敛速度慢,容易陷入局部解.基于此,将人工鱼群算法与 Elman 网络相结合,建立了改进的 AFSA-Elman 边坡位移预测网络,修正鱼群算法的步长,并利用经改进后鱼群算法强大的寻优能力,对Elman网络的初始权值和阈值进行优化,提高了Elman网络的预测精度和收敛速度.将改进的AFSA-Elman网络与传统Elman网络以及AFSA-BP网络进行对比,并模拟了3种网络的迭代过程,发现改进的AFSA-Elman预测网络较以上两种预测网络具有较高的精度,收敛性更好,更适用于边坡位移的预测.
中图分类号: