东北大学学报:自然科学版 ›› 2019, Vol. 40 ›› Issue (3): 403-408.DOI: 10.12068/j.issn.1005-3026.2019.03.019

• 机械工程 • 上一篇    下一篇

考虑多资源约束的非等效并行机节能调度算法

周炳海, 顾佳颖   

  1. (同济大学 机械与能源工程学院, 上海 201804)
  • 收稿日期:2018-01-10 修回日期:2018-01-10 出版日期:2019-03-15 发布日期:2019-03-08
  • 通讯作者: 周炳海
  • 作者简介:周炳海(1965-),男,浙江浦江人,同济大学教授,博士生导师.
  • 基金资助:
    国家自然科学基金资助项目(71471135).

An Energy-Saving Scheduling Algorithm for Non-identical Parallel Machines with Multi-resource Contraints

ZHOU Bing-hai, GU Jia-ying   

  1. College of Mechanical Engineering, Tongji University, Shanghai 201804, China.
  • Received:2018-01-10 Revised:2018-01-10 Online:2019-03-15 Published:2019-03-08
  • Contact: ZHOU Bing-hai
  • About author:-
  • Supported by:
    -

摘要: 针对瓶颈工序光刻过程中考虑能源消耗、多类型多数量的掩膜资源、换模等约束的非等效并行机调度问题,进行了改进型免疫克隆选择算法的调度方法研究.首先对问题域进行描述,以最小化总加权完成时间与能源消耗量为优化目标,建立了数学模型;在此基础上提出了一种带精英策略的多目标免疫克隆选择算法,该算法融合了非支配排序遗传算法的排序规则,并引入深度邻域搜索算子、种群更新算子以提高算法搜索性能及挖掘性能.最后,对算法进行仿真实验,结果表明该算法是有效的、可行的.

关键词: 调度, 资源, 能源消耗, 免疫克隆选择算法, 多目标

Abstract: A modified immune clone selection algorithm is proposed for the non-identical parallel lithography machine scheduling problem of the bottleneck process with energy consumption, changeover time and resource constraints, where multiple reticles are available for each reticle type. Firstly, the scheduling problem domain is described and mathematical programming formulations are put forward with the objective function of minimizing both the total weighted completion time and the energy consumption. Based on the model, then a modified multi-objective immune clone selection algorithm with elitist strategy is developed. In addition, the depth neighbor search and the population renewal operator are combined to the algorithm to increase and balance the exploration and exploitation ability. Finally, simulation experiments and theory analysis are carried out to evaluate the as-proposed algorithm, and the results indicate that the algorithm is valid and feasible.

Key words: scheduling, resource, energy consumption, immune clone selection algorithm, multi-objective

中图分类号: