东北大学学报(自然科学版) ›› 2021, Vol. 42 ›› Issue (8): 1210-1216.DOI: 10.12068/j.issn.1005-3026.2021.08.021

• 管理科学 • 上一篇    

众包物流配送车辆调度模型及优化

杜子超1, 卢福强2, 王素欣1,3, 王雷震1,3   

  1. (1. 东北大学 信息科学与工程学院, 辽宁 沈阳110819; 2. 燕山大学 经济管理学院, 河北 秦皇岛066004; 3. 东北大学秦皇岛分校 控制工程学院, 河北 秦皇岛066004)
  • 修回日期:2020-12-23 接受日期:2020-12-23 发布日期:2021-09-02
  • 通讯作者: 杜子超
  • 作者简介:杜子超(1996-),男,内蒙古呼和浩特人,东北大学硕士研究生; 王雷震(1965-),男,河北行唐人,东北大学教授.
  • 基金资助:
    国家重点研发计划项目(2020YFB1712802); 国家自然科学基金资助项目(71401027); 河北省自然科学基金资助项目(G2016501086); 河北省高等学校人文社会科学研究项目(SQ202002).

Vehicle Scheduling Model and Optimization of Crowdsourcing Logistics Distribution

DU Zi-chao1, LU Fu-qiang2, WANG Su-xin1,3, WANG Lei-zhen1,3   

  1. 1. School of Information Science & Engineering, Northeastern University, Shenyang 110819, China; 2. School of Economics and Management, Yanshan University, Qinhuangdao 066004, China; 3. School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China.
  • Revised:2020-12-23 Accepted:2020-12-23 Published:2021-09-02
  • Contact: LU Fu-qiang
  • About author:-
  • Supported by:
    -

摘要: 针对众包抢单模式和众包派单模式的配送特点,建立众包配送车辆调度模型,将两种配送模式有机结合,优势互补,并根据模型特点采用蚁群-量子粒子群混合优化算法进行求解.以深圳清湖冷链配送为例,从配送距离和成本等角度,分别与传统配送模式、抢单配送模型和派单配送模型进行比较,实验充分证明了众包配送模型的有效性;同时,将蚁群-量子粒子群混合算法与蚁群、粒子群等算法优化结果进行比较,证明了蚁群-量子粒子群混合算法的有效性.

关键词: 众包车辆调度优化;抢单模式;派单模式;蚁群算法;量子粒子群算法

Abstract: Considering the distribution characteristics of crowdsourcing order grabbing/dispatching modes, a crowdsourcing distribution vehicle scheduling model is established, in which two distribution modes are combined, complementing each other. According to the characteristics of the model, a hybrid algorithm of ant colony coupled with quantum particle swarm optimization is proposed to solve the model. Taking Qinghu cold chain distribution in Shenzhen as an example, the crowdsourcing distribution model is compared with the traditional model and order grabbing/dispatching models from the perspective of distribution distance and cost. The experiment fully proves the effectiveness of the crowdsourcing distribution model. The optimization results of hybrid algorithm proposed is compared with that of the ant colony algorithm and particle swarm optimization algorithm, thus verifying the effectiveness of the proposed algorithm.

Key words: optimization of crowdsourcing vehicle scheduling; order grabbing mode; order dispatching mode; ant colony algorithm; quantum particle swarm algorithm

中图分类号: