东北大学学报:自然科学版 ›› 2019, Vol. 40 ›› Issue (5): 673-677.DOI: 10.12068/j.issn.1005-3026.2019.05.013

• 机械工程 • 上一篇    下一篇

基于显式Wilson-θ法的动载荷识别研究

范玉川1, 赵春雨1, 鲁艳2, 张义民1   

  1. (1. 东北大学 机械工程与自动化学院, 辽宁 沈阳110819; 2. 郑州信大先进技术研究院, 河南 郑州450001)
  • 收稿日期:2018-04-19 修回日期:2018-04-19 出版日期:2019-05-15 发布日期:2019-05-17
  • 通讯作者: 范玉川
  • 作者简介:范玉川(1988-),男,河南新乡人,东北大学博士研究生;赵春雨(1963-),男,辽宁黑山人,东北大学教授,博士生导师;张义民(1958-),男,吉林长春人,东北大学"长江学者奖励计划"特聘教授,博士生导师.
  • 基金资助:
    国家自然科学基金资助项目(51775094).

Research on Dynamic Load Identification Based on Explicit Wilson-θ Method

FAN Yu-chuan1, ZHAO Chun-yu1, LU Yan2, ZHANG Yi-min1   

  1. 1. School of Mechanical & Automation, Northeastern University, Shenyang 110819, China; 2. Zhengzhou Xinda Institute of Advanced Technology, Zhengzhou 450001, China.
  • Received:2018-04-19 Revised:2018-04-19 Online:2019-05-15 Published:2019-05-17
  • Contact: ZHAO Chun-yu
  • About author:-
  • Supported by:
    -

摘要: 推导出多自由度动力学方程的Wilson-θ数值算法显式表达形式,进而提出了一种显式Wilson-θ 的动载荷识别算法.该算法避免了Wilson-θ算法的隐式迭代形式的迭代误差,在拥有显式算法特性的同时具备隐式算法的特性.当θ取合适的值时,该算法是无条件稳定的.通过悬臂梁的算例和实验对算法的识别效果进行了验证,并与传统的状态空间法的识别结果进行了对比.结果表明:该算法不仅能够对矩形载荷、谐波载荷和随机载荷进行准确地识别,并且比状态空间法的识别精度更高.

关键词: Wilson-θ法, 显式表达, 载荷识别, 无条件稳定, 状态空间法

Abstract: The explicit expression of Wilson-θ numerical algorithm for multi-dofs(degree of freedoms) dynamic equation is derived, as well as an explicit Wilson-θ dynamic load identification algorithm is proposed, avoiding the iteration error while keeping the characteristics of the implicit iteration algorithm. The algorithm is unconditionally stable when applying appropriate θ value. The recognition effect of the algorithm is verified by an example and an experiment of a cantilever beam, and the results were compared with those from the traditional state space method. The results show that the algorithm not only can accurately identify the rectangular load, the harmonic load and the random load, but also has higher recognition accuracy than state space method.

Key words: Wilson-θ, explicit formular, load identification, unconditionally stable, state-space method

中图分类号: