东北大学学报(自然科学版) ›› 2021, Vol. 42 ›› Issue (10): 1376-1385.DOI: 10.12068/j.issn.1005-3026.2021.10.002

• 信息与控制 • 上一篇    下一篇

阶次自适应AR等效电路模型的锂电池SOC滑模观测

刘芳1, 李卓1, 苏卫星1, 刘阳2   

  1. (1. 天津工业大学 天津市自主智能技术与系统重点实验室, 天津300387; 2. 华晨宝马汽车有限公司, 辽宁 沈阳110098)
  • 修回日期:2021-03-23 接受日期:2021-03-23 发布日期:2021-10-22
  • 通讯作者: 刘芳
  • 作者简介:刘芳(1983-),女,辽宁沈阳人,天津工业大学副教授; 苏卫星(1980-),男,辽宁盘锦人,天津工业大学教授.
  • 基金资助:
    国家重点研发计划项目(2018YFB1701802); 国家自然科学基金资助项目(61802280,61806143, 61772365, 41772123); 天津市自然科学基金资助项目(18JCQNJC77200); 天津市教委科研计划项目(2017KJ094); 采矿冶金过程自动化国家重点实验室/北京矿冶过程自动化重点实验室研究基金项目(BGRIMM-KZSKL-2019-08).

Sliding Mode Observer of Lithium Battery SOC Based on Order Adaptive AR Equivalent Circuit Model

LIU Fang1, LI Zhuo1, SU Wei-xing1, LIU Yang2   

  1. 1. Tianjin Key Laboratory of Autonomous Intelligence Technology and Systems, Tiangong University, Tianjin 300387, China; 2. BMW Brilliance Automotive Ltd., Shenyang 110098, China.
  • Revised:2021-03-23 Accepted:2021-03-23 Published:2021-10-22
  • Contact: SU Wei-xing
  • About author:-
  • Supported by:
    -

摘要: 基于等效电路模型的一类车载动力电池剩余荷电状态(state of charge,SOC)的估算方法,其估算精度高度依赖于模型精度,模型精度又正比于模型复杂度,以至于难以较好地应用于嵌入式控制单元.提出复杂度相对较低、能够自适应确定最优模型阶次的全新等效电路模型——基于阶次自适应AR模型的车载动力电池等效电路灰箱模型.基于此灰箱模型,给出锂离子电池SOC的滑模观测器设计推导及能观性、收敛性证明.结果表明,本文提出的基于阶次自适应AR等效电路灰箱模型的滑模观测器SOC估算方法(adaptive autoregressive-sliding mode observer,AAR-SMO)具有低模型复杂度、高精度、强鲁棒性及快速收敛等性能.

关键词: 车载动力电池;荷电状态;AR模型;等效电路模型;滑模观测器

Abstract: Based on the equivalent circuit model, the estimation method of the remaining state of charge (SOC) of a type of vehicle power battery shows that the estimation accuracy is highly dependent on the model accuracy and the model accuracy is directly proportional to the model complexity, so that it is difficult to be better applied to the embedded control unit problem. A new equivalent circuit model with relatively low complexity and capable of adaptively determining the optimal model order, i.e., a gray box model of the equivalent circuit of the vehicle power battery based on the order adaptive AR model is proposed. Based on this gray box model, the design derivation of the sliding mode observer for the state of lithium-ion battery SOC and the proof of observability and convergence are given. The results show that the sliding mode observer SOC estimation method (adaptive autoregressive-sliding mode observer, AAR-SMO) based on the order-adaptive equivalent circuit gray box model proposed in this paper has low model complexity, high accuracy, strong robustness and fast convergence performance.

Key words: vehicle power battery; state of charge; autoregressive model; equivalent circuit model; sliding mode observer

中图分类号: