东北大学学报(自然科学版) ›› 2021, Vol. 42 ›› Issue (11): 1625-1633.DOI: 10.12068/j.issn.1005-3026.2021.11.015

• 资源与土木工程 • 上一篇    下一篇

基于优化的残差网络的锈蚀钢筋图像分类

方亮1,2,3, 周云1,2, 唐志泉4   

  1. (1. 湖南大学 土木工程学院, 湖南 长沙410082; 2. 湖南大学 工程结构损伤诊断湖南省重点实验室, 湖南 长沙410082; 3. 湖南农业大学 水利与土木工程学院, 湖南 长沙410128; 4. 湖南大学 信息科学与工程学院, 湖南 长沙410082)
  • 修回日期:2021-04-26 接受日期:2021-04-26 发布日期:2021-11-19
  • 通讯作者: 方亮
  • 作者简介:方亮(1981-),女,湖南益阳人,湖南大学博士研究生,湖南农业大学讲师;周云(1979-),男,湖南长沙人,湖南大学教授,博士生导师.
  • 基金资助:
    国家自然科学基金资助项目(51878264); 湖南省交通运输厅科技进步与创新项目(201912); 长沙市科技计划项目(kq1801010).

Image Classification of Corroded Steel Reinforcement Based on Optimized Residual Network

FANG Liang1,2,3, ZHOU Yun1,2, TANG Zhi-quan4   

  1. 1. College of Civil Engineering, Hunan University, Changsha 410082, China; 2. Hunan Provincial Key Lab on Damage Diagnosis for Engineering Structures, Hunan University, Changsha 410082, China; 3. College of Water Resource & Civil Engineering, Hunan Agricultural University, Changsha 410128, China; 4. College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China.
  • Revised:2021-04-26 Accepted:2021-04-26 Published:2021-11-19
  • Contact: ZHOU Yun
  • About author:-
  • Supported by:
    -

摘要: 通过实验研究提出一种基于残差网络(ResNet)的锈蚀钢筋分类方法,为开发锈蚀钢筋现场准确定量评价方法提供新思路和技术参考.以1478根直径12mm和14mm,锈蚀率1.45%~56.10%的钢筋为研究对象,利用工业相机在实验室条件下拍摄图像,结合数据增强技术,共获得23648张样本图像,并根据锈蚀率确定11类标签.基于深度卷积神经网络搭建ResNet结构,并利用Adam算法进行迭代优化,通过对比不同数据集的实验结果评估分类准确率和训练轮数.为验证所提方法的适用性,将不同直径钢筋的样本图像组合成6种数据集进行训练与测试.研究表明,经过100次迭代训练,针对6种数据集的钢筋锈蚀程度分类准确率均在93.2%以上,最高达98.8%.该方法支持混合直径的锈蚀钢筋高精度分类,具有良好的实际应用性.

关键词: 锈蚀钢筋;锈蚀率;深度卷积神经网络;图像分类;残差网络

Abstract: A classification method for corroded steel reinforcements based on the residual network(ResNet) was proposed, and a new scheme and technical reference for further realizing accurate quantitative evaluation on corrosion ratio of steel reinforcement on-site was provided. A total of 1478 steel reinforcements with diameters of 12mm and 14mm and corrosion ratio of 1.45%~56.10% are taken as the experimental objects. The images of steel reinforcements are taken by industrial cameras under laboratory conditions, and the total of 23648 sample images are acquired by using the data enhancement techniques. Then, 11 kinds of sample image labels are determined according to the corrosion ratios. The ResNet structure is built based on the deep convolutional neural network, and the Adam algorithm is used for iterative optimization. The classification accuracy and training rounds are evaluated by comparing the experimental results of different data sets. To verify the applicability of the proposed method, 6 data sets are formed from sample images of different diameter of steel reinforcements for the training and testing. The experimental research shows that after 100 rounds of iterative training, the classification accuracy of corrosion degree of steel reinforcements for 6 kinds of data sets are more than 93.2%, and the highest is 98.8%. It also indicates that the proposed method supports the high-precision classification of corrosion reinforcement with mixed diameters, and has good practical applicability.

Key words: corroded steel reinforcement; corrosion ratio; deep convolutional neural network(CNN); image classification; residual network(ResNet)

中图分类号: