东北大学学报(自然科学版) ›› 2021, Vol. 42 ›› Issue (5): 616-623.DOI: 10.12068/j.issn.1005-3026.2021.05.002
魏颖, 雷志浩, 齐林
WEI Ying, LEI Zhi-hao, QI Lin
摘要: 在婴幼儿脑组织分割领域中,婴幼儿脑组织存在对比度低、灰度不均匀等问题,这些问题导致现有方法的精度仍然达不到满意的结果.因此,本文提出了一种基于三维U-Net网络的脑部核磁共振图像组织分割方法,融合注意力机制模块和金字塔结构模块,可以更好地在不同的层次和位置提供模型信息,图像的上下文信息得到充分的应用以降低图像信息损失,同样还可以挖掘通道映射之间的相互依赖关系和特征映射,提高特定语义的特征表示.在Iseg2017数据集中所提出算法的WM(白质),GM(灰质)的DICE指标结果与此前最优结果相比提高了0.7%,0.7%,CSF(脑脊液)则具有可对比性.在Iseg2019跨数据集挑战的评估当中,WM,GM的分割结果在DICE,ASD两个指标均取得了第一名,CSF的指标获得第二名.
中图分类号: