东北大学学报(自然科学版) ›› 2023, Vol. 44 ›› Issue (7): 953-963.DOI: 10.12068/j.issn.1005-3026.2023.07.006
郝博1,2, 尹兴超1, 闫俊伟1, 张力1,2
HAO Bo1,2, YIN Xing-chao1, YAN Jun-wei1, ZHANG Li1,2
摘要: 在智能工业生产中的复杂环境下进行手势识别人机交互,手势特征受到局部遮挡、强光照、远距离小目标的影响,导致目标检测识别过程中识别出的手势特征减少,甚至分类错误.在复杂环境下提高手势识别精准度成为人机交互任务中亟需解决的问题. 本文提出一种具有创新性的Gan-St-YOLOv5模型,在YOLOv5的基础上生成对抗网络(generative adversarial network, GAN)和Swin Transformer模块,融入SENet通道注意力机制,使用Confluence检测框选取算法,增强模型检测的准确度. 为了验证模型的优越性,与YOLOv5模型进行对比,得出Gan-St-YOLOv5在完全可见测试集上mAP_0.5高达96.1%,在强光照测试集上mAP_0.5高达92.3%,在部分遮挡测试集上mAP_0.5高达86.6%,在远距离小目标测试集上准确度高达96.4%,均优于YOLOv5目标检测算法,以较小的效率损失取得了较高精度.
中图分类号: