东北大学学报(自然科学版) ›› 2024, Vol. 45 ›› Issue (6): 850-857.DOI: 10.12068/j.issn.1005-3026.2024.06.013

• 机械工程 • 上一篇    

面向外骨骼性能评估的多源生理能耗预测

李坦, 王宏(), 金博丕, 吴志伟   

  1. 东北大学 机械工程与自动化学院,辽宁 沈阳 110819
  • 收稿日期:2023-02-09 出版日期:2024-06-15 发布日期:2024-09-18
  • 通讯作者: 王宏
  • 作者简介:李 坦(1998-),女,山东菏泽人,东北大学博士研究生
    王 宏(1960-),女,辽宁沈阳人,东北大学教授,博士生导师.
  • 基金资助:
    国家重点研发计划项目(2021YFF0306405)

Multi-source Physiological Energy Consumption Prediction for Exoskeleton Performance Evaluation

Tan LI, Hong WANG(), Bo-pi JIN, Zhi-wei WU   

  1. School of Mechanical Engineering & Automation,Northeastern University,Shenyang 110819,China.
  • Received:2023-02-09 Online:2024-06-15 Published:2024-09-18
  • Contact: Hong WANG
  • About author:WANG Hong, E-mail: hongwang@mail.neu.edu.cn

摘要:

在外骨骼设计过程中,助力性能评估直接影响整体结构的安全性和效率.针对目前性能评估多采用单一指标问题,提出了一种基于多源生理信号(表面肌电、脉搏和呼吸)的长短期记忆(long short?term memory,LSTM)网络运动能耗预测方法.该方法首先对生理信号进行处理和特征提取,然后使用6层LSTM模型进行预测,并使用K折交叉验证方法进行验证.同时,与决策树(decision tree,DT)和支持向量机(support vector machine,SVM)进行了对比实验.最后,建立了在线能耗监测系统,作为评估外骨骼助力性能的依据.结果表明,三源信号均方根差(root mean square error,RMSE)为0.073 kJ,证明了采用多源生理信号融合预测的可行性;LSTM的RMSE相较于DT,SVM下降了39.53%,15.68%,测试集的总能耗值误差值为23.98 kJ,说明LSTM模型对于总能耗预测效果最好,可用于外骨骼的助力性能评估.

关键词: 能耗预测, 长短期记忆, 外骨骼性能评估, 信号融合, 在线监测

Abstract:

In the process of exoskeleton design, the evaluation of assistance performance directly impacts the overall structural safety and efficiency. Addressing the current issue of predominantly utilizing single metrics for performance evaluation, a method based on multi?source physiological signals (surface electromyography, photopretismography, and respiration) for LSTM prediction of motion energy consumption was proposed. This method involves preprocessing and feature extraction of physiological signals, followed by prediction using a 6?layer LSTM model and validation through K-fold cross?validation. Comparative experiments with DT and SVM were conducted. Finally, an online energy consumption monitoring system was established, serving as a basis for evaluating exoskeleton assistance performance. Results indicate the feasibility of utilizing multi?source physiological signals for fusion prediction, with an RMSE of 0.073 kJ for the three?source signal. The LSTM model achieves a 39.53% and 15.68% reduction in RMSE compared to DT and SVM, respectively. The total energy consumption error on the test set is 23.98 kJ, demonstrating the superior performance of the LSTM model for total energy consumption prediction and its suitability for exoskeleton assistance performance evaluation.

Key words: energy consumption prediction, LSTM, exoskeleton performance evaluation, signal fusion, online monitoring

中图分类号: