东北大学学报(自然科学版) ›› 2024, Vol. 45 ›› Issue (7): 944-952.DOI: 10.12068/j.issn.1005-3026.2024.07.005

• 信息与控制 • 上一篇    下一篇

基于生成对抗网络的人脸年龄渐进合成算法

杨晓雨(), 王爱侠, 杨钢, 李晶皎   

  1. 东北大学 信息科学与工程学院,辽宁 沈阳 110819
  • 收稿日期:2023-03-13 出版日期:2024-07-15 发布日期:2024-10-29
  • 通讯作者: 杨晓雨
  • 作者简介:李晶皎(1964-),女,辽宁沈阳人,东北大学教授,博士生导师.
  • 基金资助:
    国家自然科学基金资助项目(62076058)

Progressive Face Age Synthesis Algorithm Based on Generative Adversarial Network

Xiao-yu YANG(), Ai-xia WANG, Gang YANG, Jing-jiao LI   

  1. School of Information Science & Engineering,Northeastern University,Shenyang 110819,China.
  • Received:2023-03-13 Online:2024-07-15 Published:2024-10-29
  • Contact: Xiao-yu YANG
  • About author:YANG Xiao-yuE-mail:sophiayxyqq@163.com

摘要:

人脸年龄合成(face age synthesis,FAS)的目标是根据源人脸图像合成指定年龄人脸图像,同时保留人脸的个人特征和身份信息.针对年龄变换时无关特征容易改变和产生伪影鬼影的问题,提出一种基于生成对抗网络的人脸年龄渐进合成算法.采用基于门控循环单元的年龄编辑模块自适应地过滤或加入特征,并使用属性解耦模块在潜在空间进行对抗学习,通过生成器和判别器的对抗策略保证了真实自然的人脸合成,使用年龄分类约束拟合特定年龄分布,为了保证年龄无关属性的保留,还在生成对抗网络中引入了重建学习.在跨年龄名人数据集(cross?age celebrity dataset,CACD)下的实验结果表明,对比其他基于条件生成对抗网络的算法,提出的算法生成的人脸图像伪影失真有所减少,年龄显著性增强,具有较好的年龄准确性和较高的身份一致性.

关键词: 人脸年龄合成, 生成对抗网络, 属性解耦, 潜在空间, 门控循环单元, 重建学习

Abstract:

The goal of face age synthesize (FAS) is to synthesize face images of specified ages based on the source face image, while preserving personal characteristics and identity information of the face. To solve the problem that irrelevant features are easy to change and artifact ghosting occurs when age is changed, a progressive face age synthesis algorithm based on generative adversarial network is proposed. The age editing module based on gate recurrent unit is used to filter or add features adaptively, and attribute decoupling module is used for adversarial learning in the latent space. Through the adversarial strategy of generator and discriminator, the real and natural face synthesis is guaranteed. The age classification constraint is used to fit the specific age distribution. In order to preserve age?independent properties, reconstruction learning is also introduced into generative adversarial network. Experimental results on CACD dataset show that, compared with other algorithms based on conditional generative adversarial network, the proposed algorithm has reduced artifacts and distortions, enhanced age significance, and has better age accuracy and higher identity consistency.

Key words: face age synthesis, generative adversarial network, attribute decoupling, latent space, gate recurrent unit, reconstruction learning

中图分类号: