东北大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (5): 29-36.DOI: 10.12068/j.issn.1005-3026.2025.20230297

• 信息与控制 • 上一篇    下一篇

基于目标检测的复杂城市交通环境感知技术及应用

艾散·西尔艾力1, 车德福1(), 王夺2, 喻甜3   

  1. 1.东北大学 资源与土木工程学院,辽宁 沈阳 110819
    2.中冶沈勘工程技术有限公司,辽宁 沈阳 110167
    3.飞翼股份有限公司,湖南 长沙 410600
  • 收稿日期:2023-10-27 出版日期:2025-05-15 发布日期:2025-08-07
  • 通讯作者: 车德福
  • 作者简介:艾散·西尔艾力(1997—),男,新疆尉犁人,东北大学硕士研究生
    王 夺(1980—),男,辽宁营口人,中冶沈勘工程技术有限公司教授级高级工程师.
  • 基金资助:
    国家自然科学基金资助项目(41871310);中央高校基本科研业务费专项资金资助项目(N17241004);中央高校基本科研业务费专项资金资助项目(N2201007)

Perception Technology and Application of Complex Urban Traffic Environment Based on Target Detection

Aisan XIERAILI1, De-fu CHE1(), Duo WANG2, Tian YU3   

  1. 1.School of Resources & Civil Engineering,Northeastern University,Shenyang 110819,China
    2.Shen Kan Engineering & Technology Corporation,MCC,Shenyang 110167,China
    3.Feny Corporation Limited,Changsha 410600,China.
  • Received:2023-10-27 Online:2025-05-15 Published:2025-08-07
  • Contact: De-fu CHE

摘要:

基于机器视觉的环境感知技术是智慧交通领域的关键任务之一.传统深度学习算法通常只能满足单一场景下的个别目标检测任务,难以应对复杂交通环境下的智能感知需求.为提高车辆在复杂环境下的智能感知能力,提出了一种改进的YOLOv8目标检测网络模型,结合注意力机制、优化器和可变形卷积层,实现了在复杂城市交通环境下的多目标检测.采用YOLOv4,YOLOv8及改进的YOLOv8算法对复杂交通环境样本图进行目标检测对比实验.结果表明,与YOLOv4,YOLOv8相比,改进的YOLOv8算法的平均精度分别提高了40.76%和16.92%.该算法的检测准确性与实时性满足实际应用需求,可通过多传感器信息融合,实现在复杂城市交通环境下的智能感知.

关键词: YOLOv8, 目标检测, 复杂城市交通, 环境感知, 智慧交通

Abstract:

Machine vision-based environmental perception technology is one of the key tasks in the field of intelligent transportation. Traditional deep learning algorithms typically meet the detection needs of individual targets in simple scenarios. However, they are not capable of addressing the intelligent perception requirements in complex traffic environment. To improve the intelligent perception capability of vehicles in such environment, this paper proposes an improved YOLOv8 object detection network model, integrating attention mechanisms, optimizers, and deformable convolutional layers to achieve multi-target detection in complex urban traffic environment. To verify the effectiveness of the algorithm, comparative experiment were conducted using YOLOv4, YOLOv8, and the improved YOLOv8 algorithm on sample images from complex traffic environments. The results show that, compared to YOLOv4 and YOLOv8, the improved YOLOv8 algorithm increased the average accuracy by 40.76% and 16.92%, respectively. The detection accuracy and real-time performance of the improved YOLOv8 algorithm meet the practical application requirements, and through multi-sensor information fusion, it can realize intelligent perception in complex urban traffic environment.

Key words: YOLOv8, target detection, complex urban traffic, environment perception, intelligent transportation

中图分类号: