东北大学学报:自然科学版 ›› 2018, Vol. 39 ›› Issue (11): 1551-1555.DOI: 10.12068/j.issn.1005-3026.2018.11.007

• 信息与控制 • 上一篇    下一篇

基于时空影响域的加权地震网络拓扑特性分析

徐艳杰, 任涛, 齐义   

  1. (东北大学 软件学院, 辽宁 沈阳110169)
  • 收稿日期:2017-08-21 修回日期:2017-08-21 出版日期:2018-11-15 发布日期:2018-11-09
  • 通讯作者: 徐艳杰
  • 作者简介:徐艳杰(1992-),女,河南周口人,东北大学博士研究生; 任涛(1980-),男,辽宁沈阳人,东北大学教授,博士生导师.冯明杰(1971-), 男, 河南禹州人, 东北大学副教授; 王恩刚(1962-), 男, 辽宁沈阳人, 东北大学教授,博士生导师.
  • 基金资助:
    国家自然科学基金资助项目(61473073, 61104074); 中央高校基本科研业务费专项资金资助项目(N161702001); 辽宁省高校优秀人才计划项目(LJQ2014028).

Topological Characteristic Analysis of Weighted Seismic Network Based on Space-Time Influence Domain

XU Yan-jie, REN Tao, QI Yi   

  1. School of Software, Northeastern University, Shenyang 110169, China.
  • Received:2017-08-21 Revised:2017-08-21 Online:2018-11-15 Published:2018-11-09
  • Contact: XU Yan-jie
  • About author:-
  • Supported by:
    -

摘要: 针对加利福尼亚地震网络,为了研究网络中节点间的相互影响关系,首先基于时空影响域,以平均震级比对边权值进行定义,从而生成加权地震网络.其次,选取零模型为参照物,分析了加权地震网络的拓扑特性.同时对边权值和节点权值的分布进行分析.结果发现:加权地震网络具有无标度和小世界特性,且节点和边权值都具有幂律分布特性;节点的权值与其最大震级值存在正相关.本文基于地震数据所构建的加权地震网络更符合实际情况.

关键词: 地震网络, 复杂网络, 时空影响域, 无向/有向网络, 零模型

Abstract: The seismic network of the south California is taken as the research object. In order to study the influence relationship among nodes in seismic network, the weighted seismic network is generated based on the space-time influence domain and the mean magnitude ratio. Then, based on the reference effect of null model, the topological characteristic of weighted seismic network is analyzed. At the same time, the weight distribution of the edge and the node are analyzed. It is found that the weighted seismic network has scale-free and small-world characteristics, and both the node and the edge weight have power-law distribution. In addition, there is a positive correlation between the weight of the node and its maximum magnitude. Based on the seismic data, the weighted seismic network can reflect the actual situation well.

Key words: seismic network, complex network, space-time influence domain, undirected/directed network, null model

中图分类号: