东北大学学报(自然科学版) ›› 2022, Vol. 43 ›› Issue (7): 981-987.DOI: 10.12068/j.issn.1005-3026.2022.07.010

• 机械工程 • 上一篇    下一篇

面向STEP-NC自由曲面特征的加工操作方法智能决策

张禹, 何楷文, 李清书, 巩亚东   

  1. (东北大学 机械工程与自动化学院, 辽宁 沈阳110819)
  • 发布日期:2022-08-02
  • 通讯作者: 张禹
  • 作者简介:张禹(1979-),男,辽宁鞍山人,东北大学副教授; 巩亚东(1958-),男,辽宁本溪人,东北大学教授,博士生导师.
  • 基金资助:
    中央高校基本科研业务费专项资金资助项目(N180313010); 辽宁省自然科学基金资助项目(2019-MS-124).

Intelligent Decision-Making of Machining Operation Method for STEP-NC-Compliant Freeform Surface Features

ZHANG Yu, HE Kai-wen, LI Qing-shu, GONG Ya-dong   

  1. School of Mechanical Engineering & Automation, Northeastern University, Shenyang 110819, China.
  • Published:2022-08-02
  • Contact: ZHANG Yu
  • About author:-
  • Supported by:
    -

摘要: 为提升复杂零件工艺规划的集成化和智能化,提出一种基于混合算法面向STEP-NC自由曲面特征的加工操作方法智能决策方法.首先,构建了面向STEP-NC自由曲面特征的加工操作方法决策BP神经网络模型.然后,基于自适应视野策略、自适应步长策略和混沌算法给出了改进的人工鱼群算法,并与BP神经网络相融合设计了用于STEP-NC自由曲面特征加工操作方法决策的混合算法.并利用归一化的零件加工信息实现了STEP-NC自由曲面特征的加工操作方法高效智能决策.最后,通过实例验证了该方法的有效性和可行性.

关键词: STEP-NC;自由曲面;加工操作方法决策;BP神经网络;改进人工鱼群算法

Abstract: In order to improve the integration and intelligence of process planning for complex parts, an intelligent decision-making of machining operation method for STEP-NC-compliant freeform surface features based on hybrid algorithm is proposed. Firstly, a BP neural network model for determining the machining operation method of freeform surface features compliant with STEP-NC is constructed. Then, an improved artificial fish swarm algorithm is presented based on the strategy of adaptive vision and adaptive step as well as chaos algorithm. Furthermore, the improved artificial fish swarm algorithm and the BP neural network algorithm are hybridized to realize efficient and intelligent decision-making of machining operation method for STEP-NC-compliant freeform surface features by using the normalized machining information of parts. Finally, a case study is made to verify the effectiveness and feasibility of the proposed method.

Key words: STEP-NC; freeform surface; decision-making of machining operation method; BP neural network; improved artificial fish swarm algorithm

中图分类号: