东北大学学报(自然科学版) ›› 2023, Vol. 44 ›› Issue (1): 18-25.DOI: 10.12068/j.issn.1005-3026.2023.01.003

• 信息与控制 • 上一篇    下一篇

基于频谱相关性分析的齿轮早期磨损诊断

王宏民1,2, 禅亮1,2   

  1. (1.哈尔滨理工大学 自动化学院, 黑龙江 哈尔滨150080; 2.黑龙江省复杂智能系统与集成重点实验室, 黑龙江 哈尔滨150080)
  • 发布日期:2023-01-30
  • 通讯作者: 王宏民
  • 作者简介:王宏民(1962-),男,黑龙江哈尔滨人,哈尔滨理工大学教授.
  • 基金资助:
    黑龙江省自然科学基金资助项目(F201310).

Early Wear Diagnosis of Gears Based on Spectrum Correlation Analysis

WANG Hong-min1,2, CHAN Liang1,2   

  1. 1. School of Automation, Harbin University of Science and Technology, Harbin 150080, China; 2. Heilongjiang Provincial Key Laboratory of Complex Intelligent System and Integration, Harbin 150080, China.
  • Published:2023-01-30
  • Contact: WANG Hong-min
  • About author:-
  • Supported by:
    -

摘要: 基于振动分析的齿轮故障检测已被证明在故障识别中是有效的,但对表征早期磨损的振动信号的提取和识别仍没有得到很好的解决.本文提出一种基于频谱相关性分析的变分模态分解(VMD)和核支持向量机(SVM)相结合的齿轮早期磨损诊断方法,对能够揭示早期磨损状态的微弱齿轮振动信号采用近似完全重构的准则来初始化模式数,并采用信号功率谱密度最大值对应的频率初始化VMD方法的中心频率,用以有效提取齿轮磨损信息,进而结合核支持向量机进行齿轮的早期磨损诊断.实验结果表明,所提方法可有效克服背景噪声大无法预设模式数的问题,对噪声具有更好的鲁棒性,诊断准确率达到94.4%,可为齿轮早期磨损检测提供解决方法.

关键词: 齿轮振动信号的提取;早期磨损诊断;频谱相关性分析;变分模态分解;支持向量机

Abstract: Gear fault detection based on vibration analysis has been proven to be effective in fault identification. However, the extraction and identification of vibration signals characterizing early wear have not been solved well. This paper proposes a method for early wear diagnosis of gears, combining variational mode decomposition (VMD) based on spectrum correlation analysis with kernel support vector machine (SVM). For weak gear vibration signals that can characterize early wear, the modal numbers are initialized by an approximate complete reconstruction criterion. Meanwhile, the frequency corresponding to the maximum value of the signal power spectral density is used to initialize the center frequency of the VMD method. It is used to effectively extract gear wear information from gear vibration signals and then be combined with kernel support vector machines for early wear diagnosis of gears. The experimental results show that the proposed method can effectively overcome the problem that the modal numbers cannot be preset with large background noise, be with better robustness to noisy situations, and achieve a diagnostic accuracy of 94.4%, which provides a solution for early wear detection of gears.

Key words: extraction of gear vibration signals; early wear diagnosis; spectrum correlation analysis; variational mode decomposition (VMD); support vector machines (SVM)

中图分类号: