东北大学学报:自然科学版 ›› 2018, Vol. 39 ›› Issue (1): 6-10.DOI: 10.12068/j.issn.1005-3026.2018.01.002

• 信息与控制 • 上一篇    下一篇

多变量Hammerstein-Wiener模型的参数辨识

白晶1,2, 毛志忠1, 浦铁成2   

  1. (1. 东北大学 信息科学与工程学院, 辽宁 沈阳110819; 2. 北华大学 电气信息工程学院, 吉林省吉林市132021)
  • 收稿日期:2016-07-04 修回日期:2016-07-04 出版日期:2018-01-15 发布日期:2018-01-31
  • 通讯作者: 白晶
  • 作者简介:白 晶(1978 - )?女?吉林榆树人?东北大学博士研究生?北华大学副教授? 毛志忠(1961- )?男?山东莱州人?东北大学教授?博士生导师.
  • 基金资助:
    国家自然科学基金资助项目(61473072); 吉林省科技发展计划项目(20160312017ZX,20170312031ZG).

Parameter Identification of Multivariate Hammerstein-Wiener Model

BAI Jing1, 2, MAO Zhi-zhong1, PU Tie-cheng2   

  1. 1. School of Information Science & Engineering, Northeastern University, Shenyang 110819, China; 2. College of Electrical and Information Engineering, Beihua University, Jilin 132021, China.
  • Received:2016-07-04 Revised:2016-07-04 Online:2018-01-15 Published:2018-01-31
  • Contact: MAO Zhi-zhong
  • About author:-
  • Supported by:
    -

摘要: 为了突破现存Hammerstein-Wiener模型参数辨识方法中假设输出非线性块可逆的限定条件,基于可分非线性最小二乘算法,提出由多个单变量Hammerstein子模型和一个多变量输出非线性块组成的多变量Hammerstein-Wiener模型的参数辨识方法.首先,以输出误差最小为准则使用Levenberg-Marquardt法辨识出输出非线性块和Hammerstein子模型的两个参数集.其次,对Hammerstein子模型使用基于张量积的奇异值分解,辨识出输入非线性块与中间线性块的参数.再次,理论分析了所提辨识方法的辨识收敛性.最后,通过仿真验证此法的有效性.

关键词: 多变量, 非线性模型, Hammerstein-Wiener模型, 可分非线性最小二乘, 奇异值分解, 收敛性

Abstract: In order to break the limited condition that the output nonlinear blocks are reversible in existing Hammerstein-Wiener model parameter identification methods, a new parameter identification method of multivariate Hammerstein-Wiener model was proposed based on separable nonlinear least square algorithm. The model was comprised of multiple univariate Hammerstein submodels and one multivariate nonlinear block. First, two parameter sets were identified for output nonlinear block and Hammerstein submodels using Levenberg-Marquardt algorithm under the minimum output error criterion. Second, parameters of input nonlinear block and middle linear block were identified by singular value decomposition (SVD) of tensor product from Hammerstein submodels. Then, the identification convergence was theoretically analyzed. Finally, simulation results showed the effectiveness of the proposed method.

Key words: multivariate, nonlinear model, Hammerstein-Wiener model, separable nonlinear least square, SVD(singular value decomposition), convergence

中图分类号: