东北大学学报(自然科学版) ›› 2023, Vol. 44 ›› Issue (6): 761-769.DOI: 10.12068/j.issn.1005-3026.2023.06.001

• 信息与控制 •    下一篇

空间参数聚类辨识的机器人零位标定方法与精度评估

赵彬1,2,3, 吴成东1,3, 姜杨3, 孙若怀1   

  1. (1. 东北大学 信息科学与工程学院, 辽宁 沈阳110819; 2. 沈阳新松机器人自动化有限公司, 辽宁 沈阳110167; 3. 东北大学 机器人科学与工程学院, 辽宁 沈阳110169)
  • 发布日期:2023-06-20
  • 通讯作者: 赵彬
  • 作者简介:赵彬(1987-),男,辽宁沈阳人,东北大学博士研究生,沈阳新松机器人高级工程师.
  • 基金资助:
    国家自然科学基金重点资助项目(U20A20197); 辽宁省科技重大专项项目(2019JH1/10100005).

Robot Zero Calibration Method and Accuracy Evaluation for Spatial Parameter Clustering Identification

ZHAO Bin1,2,3, WU Cheng-dong1,3, JIANG Yang3, SUN Ruo-huai1   

  1. 1. School of Information Science & Engineering, Northeastern University, Shenyang 110819, China; 2. SIASUN Robot & Automation Co., Ltd., Shenyang 110167, China; 3. Faculty of Robot Science and Engineering, Northeastern University, Shenyang 110169, China.
  • Published:2023-06-20
  • Contact: ZHAO Bin
  • About author:-
  • Supported by:
    -

摘要: 针对传统轴销标定和激光跟踪仪标定方法过程的不足,本文提出了一种空间参数聚类辨识的机器人零位标定设备和方法.利用千分表和空间解析几何构建零位标定方程,将机器人的理论位姿值反向解析出零位训练参数.将多组零位训练数据经过聚类模块辨识,可以求解每个关节的最优零位参数.实验结果表明,采用空间参数聚类辨识的标定方法相比于最为常用的轴销标定方法,绝对精度提升幅度达72.9%,相比于精度最高的激光跟踪仪标定法其时间效率提升达87.5%.本文方法兼顾了标定精度和效率,显著提升了零位标定法对于标定环境的适应性.

关键词: 聚类;工业机器人;参数辨识;零位标定;机器学习

Abstract: The paper proposes a robot zero calibration device and method based on spatial parameter clustering identification to overcome the shortcomings of traditional shaft pin and laser tracker calibration. The dial indicator and spatial analytic geometry are used to construct the zero calibration equation, which analyzes the robot’s theoretical post and posture values to obtain the zero-position training parameters. The clustering module identifies multiple sets of zero-position training parameters, and the optimal zero-position parameters of each joint can be solved. The experimental results show that spatial parameter clustering can improve the absolute accuracy by 72.9%, compared to the most commonly used shaft pin calibration method. Compared with the laser tracker calibration method with the highest accuracy, the time efficiency is improved by 87.5%. This method considers the calibration accuracy and efficiency and significantly improves the adaptability to the calibration environment.

Key words: clustering; industrial robot; parameter identification; zero calibration; machine learning

中图分类号: