东北大学学报(自然科学版) ›› 2023, Vol. 44 ›› Issue (9): 1245-1250.DOI: 10.12068/j.issn.1005-3026.2023.09.004

• 信息与控制 • 上一篇    下一篇

叠加泛化集成的烧结水分预测LGBM-RF-XGB混合模型

黄传奇, 任昱乾, 吴朝霞   

  1. (东北大学秦皇岛分校 控制工程学院, 河北 秦皇岛066000)
  • 发布日期:2023-09-28
  • 通讯作者: 黄传奇
  • 作者简介:黄传奇(1998-),男,山东菏泽人,东北大学硕士研究生; 吴朝霞(1969-),女,浙江嘉兴人,东北大学教授.
  • 基金资助:
    河北省教育厅科学技术研究资助项目(BJ2021099).

A Stacked Generalization Ensemble-based Hybrid LGBM-RF-XGB Model for Sintering Moisture Prediction

HUANG Chuan-qi, REN Yu-qian, WU Zhao-xia   

  1. College of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066000, China.
  • Published:2023-09-28
  • Contact: WU Zhao-xia
  • About author:-
  • Supported by:
    -

摘要: 针对烧结混合料水分预测的问题,引入了基于叠加泛化集成的建模方法,提出了Robust Scaler-Rank Gauss (RS-RG) 混合算法对输入叠加模型的数据进行处理,进而建立了基于叠加泛化集成的烧结混合料水分预测轻量梯度提升机-随机森林-极端梯度提升机(LGBM-RF-XGB)混合模型,可以在烧结料混合前预知水分值.LGBM-RF-XGB叠加模型的内部机制是先从LGBM和 RF模型生成元数据,再使用 XGB模型计算最终预测.结合烧结现场数据,将提出的叠加模型与多个基准模型进行了对比仿真实验.结果表明,所提出叠加模型的精度和误差均优于用于对比的基准模型,满足烧结工艺要求,可以用于实际生产中的烧结混合料水分提前预测,为加水量自动控制提供理论依据.

关键词: 烧结混合料水分;轻量梯度提升机 (LGBM);随机森林(RF);极端梯度提升机(XGB);RS-RG数据处理

Abstract: In order to predict the moisture of the mixture, a modeling method based on stacked generalization ensemble is introduced, and a Robust Scaler-Rank Gauss (RS-RG) hybrid algorithm is proposed to process the data input to the stacking model, and then the LGBM-RF-XGB hybrid model is established for sintered mixture moisture prediction based on stacked generalization ensemble, which can predict the moisture value before sinter mixture mixing. The internal mechanism of the LGBM-RF-XGB overlay model consists of generating metadata from the LGBM and RF models to calculate the final prediction using the XGB model. The proposed stacking model was simulated in comparison with several reference models by combining the sintering site data. The results show that the accuracy and error of the proposed stacking model are better than those of the reference models used for comparison, which meets the sintering process requirements. The proposed algorithm can be used for advance prediction of sinter mix moisture in actual production and provides a theoretical basis for automatic control of water addition.

Key words: moisture of sintering mixture (MSM); light gradient boosting machine (LGBM); random forest (RF); extreme gradient boosting machine (XGB); RS-RG data processing

中图分类号: