
东北大学学报(自然科学版) ›› 2024, Vol. 45 ›› Issue (7): 944-952.DOI: 10.12068/j.issn.1005-3026.2024.07.005
收稿日期:2023-03-13
出版日期:2024-07-15
发布日期:2024-10-29
通讯作者:
杨晓雨
作者简介:李晶皎(1964-),女,辽宁沈阳人,东北大学教授,博士生导师.
基金资助:
Xiao-yu YANG(
), Ai-xia WANG, Gang YANG, Jing-jiao LI
Received:2023-03-13
Online:2024-07-15
Published:2024-10-29
Contact:
Xiao-yu YANG
About author:YANG Xiao-yuE-mail:sophiayxyqq@163.com摘要:
人脸年龄合成(face age synthesis,FAS)的目标是根据源人脸图像合成指定年龄人脸图像,同时保留人脸的个人特征和身份信息.针对年龄变换时无关特征容易改变和产生伪影鬼影的问题,提出一种基于生成对抗网络的人脸年龄渐进合成算法.采用基于门控循环单元的年龄编辑模块自适应地过滤或加入特征,并使用属性解耦模块在潜在空间进行对抗学习,通过生成器和判别器的对抗策略保证了真实自然的人脸合成,使用年龄分类约束拟合特定年龄分布,为了保证年龄无关属性的保留,还在生成对抗网络中引入了重建学习.在跨年龄名人数据集(cross?age celebrity dataset,CACD)下的实验结果表明,对比其他基于条件生成对抗网络的算法,提出的算法生成的人脸图像伪影失真有所减少,年龄显著性增强,具有较好的年龄准确性和较高的身份一致性.
中图分类号:
杨晓雨, 王爱侠, 杨钢, 李晶皎. 基于生成对抗网络的人脸年龄渐进合成算法[J]. 东北大学学报(自然科学版), 2024, 45(7): 944-952.
Xiao-yu YANG, Ai-xia WANG, Gang YANG, Jing-jiao LI. Progressive Face Age Synthesis Algorithm Based on Generative Adversarial Network[J]. Journal of Northeastern University(Natural Science), 2024, 45(7): 944-952.
| 年龄组 | 21~30 | 31~40 | 41~50 | 51~62 |
|---|---|---|---|---|
| 训练集 | 38 620 | 41 024 | 37 805 | 26 534 |
| 测试集 | 2 085 | 2 111 | 1 955 | 1 465 |
表1 CACD数据信息统计
Table 1 CACD data information statistics
| 年龄组 | 21~30 | 31~40 | 41~50 | 51~62 |
|---|---|---|---|---|
| 训练集 | 38 620 | 41 024 | 37 805 | 26 534 |
| 测试集 | 2 085 | 2 111 | 1 955 | 1 465 |
| 年龄组 | 21~30 | 31~40 | 41~50 | 51~62 |
|---|---|---|---|---|
| 真实人脸 | 28.43±7.28 | 35.31±8.83 | 43.00±11.25 | 49.88±12.20 |
| 合成人脸 | 29.63±7.94 | 36.34±9.42 | 44.43±9.87 | 48.39±11.95 |
表2 年龄分布评估结果
Table 2 Age distribution assessment results
| 年龄组 | 21~30 | 31~40 | 41~50 | 51~62 |
|---|---|---|---|---|
| 真实人脸 | 28.43±7.28 | 35.31±8.83 | 43.00±11.25 | 49.88±12.20 |
| 合成人脸 | 29.63±7.94 | 36.34±9.42 | 44.43±9.87 | 48.39±11.95 |
| 年龄组 | 21~30 | 31~40 | 41~50 | 51~62 |
|---|---|---|---|---|
| IPCGAN | 0.74 | 1.16 | 1.55 | 3.09 |
| SAM-GAN | 0.67 | 1.29 | 1.46 | 2.06 |
| PFA-GAN | 0.81 | 1.05 | 1.51 | 2.73 |
| 本文算法 | 1.20 | 1.03 | 1.43 | 1.49 |
表3 平均年龄误差比较
Table 3 Comparison of mean age errors
| 年龄组 | 21~30 | 31~40 | 41~50 | 51~62 |
|---|---|---|---|---|
| IPCGAN | 0.74 | 1.16 | 1.55 | 3.09 |
| SAM-GAN | 0.67 | 1.29 | 1.46 | 2.06 |
| PFA-GAN | 0.81 | 1.05 | 1.51 | 2.73 |
| 本文算法 | 1.20 | 1.03 | 1.43 | 1.49 |
| 年龄组 | 21~30 | 31~40 | 41~50 | 51~62 |
|---|---|---|---|---|
| 真实人脸 | 93.75±1.25 | 92.58±2.19 | 89.87±4.17 | 88.74±4.66 |
| 21~30 | — | 96.20±0.99 | 93.91±3.12 | 93.00±3.63 |
| 31~40 | — | — | — | 95.54±1.77 |
| 41~50 | — | — | — | 96.92±0.20 |
表4 客观人脸验证结果
Table 4 Objective face verification results
| 年龄组 | 21~30 | 31~40 | 41~50 | 51~62 |
|---|---|---|---|---|
| 真实人脸 | 93.75±1.25 | 92.58±2.19 | 89.87±4.17 | 88.74±4.66 |
| 21~30 | — | 96.20±0.99 | 93.91±3.12 | 93.00±3.63 |
| 31~40 | — | — | — | 95.54±1.77 |
| 41~50 | — | — | — | 96.92±0.20 |
| 年龄组 | 21~30 | 31~40 | 41~50 | 51~62 |
|---|---|---|---|---|
| IPCGAN | 99.99 | 98.50 | 97.82 | 95.94 |
| SAM-GAN | 100 | 99.87 | 98.39 | 96.20 |
| PFA-GAN | 100 | 99.99 | 98.47 | 96.97 |
| 本文算法 | 100 | 99.86 | 98.65 | 97.12 |
表5 人脸验证率比较 (%)
Table 5 Comparison of face verification rate
| 年龄组 | 21~30 | 31~40 | 41~50 | 51~62 |
|---|---|---|---|---|
| IPCGAN | 99.99 | 98.50 | 97.82 | 95.94 |
| SAM-GAN | 100 | 99.87 | 98.39 | 96.20 |
| PFA-GAN | 100 | 99.99 | 98.47 | 96.97 |
| 本文算法 | 100 | 99.86 | 98.65 | 97.12 |
| 1 | Suo J L, Zhu S C, Shan S G,et al.A compositional and dynamic model for face aging[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(3):385-401. |
| 2 | Tazoe Y, Gohara H, Maejima A,et al.Facial aging simulator considering geometry and patch‑tiled texture[M].New York:ACM,2012. |
| 3 | Tsai M H, Liao Y K, Lin I C.Human face aging with guided prediction and detail synthesis[J].Multimedia Tools and Applications,2014,72(1):801-824. |
| 4 | Todd J T, Mark L S, Shaw R E,et al.The perception of human growth[J].Scientific American,1980,242(2):132-145. |
| 5 | Suo J L, Chen X L, Shan S G,et al.A concatenational graph evolution aging model[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2012,34(11):2083-2096. |
| 6 | Ramanathan N, Chellappa R.Modeling age progression in young faces[C]//2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.New York,2006:387-394. |
| 7 | Kemelmacher‑Shlizerman I, Suwajanakorn S, Seitz S M.Illumination‑aware age progression[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Columnus,2014:3334-3341. |
| 8 | Tiddeman B, Burt M, Perrett D.Prototyping and transforming facial textures for perception research[J].IEEE Computer Graphics and Applications,2001,21(5):42-50. |
| 9 | Wang W, Cui Z, Yan Y,et al.Recurrent face aging[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas,2016:2378–2386. |
| 10 | Duong C N, Luu K, Quach K G,et al.Longitudinal face modeling via temporal deep restricted boltzmann machines[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Las Vegas,2016:5772-5780. |
| 11 | Duong C N, Quac K G, Luu K,et al.Temporal non‑volume preserving approach to facial age‑progression and age‑invariant face recognition[C]//Proceedings of the IEEE International Conference on Computer Vision.Venice,2017:3735-3743. |
| 12 | Goodfellow I, Pouget‑Abadie J, Mirza M,et al.Generative adversarial nets[J].Advances in Neural Information Processing Systems,2014,27(2):2672-2680. |
| 13 | Zhu J Y, Park T, Isola P,et al.Unpaired image‑to‑image translation using cycle consistent adversarial networks[C]//Proceedings of the IEEE International Conference on Computer Vision.Venice,2017:2223-2232. |
| 14 | Isola P, Zhu J Y, Zhou T H,et al.Image‑to‑image translation with conditional adversarial networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,2017:1125-1134. |
| 15 | Choi Y, Uh Y, Yoo J,et al.Stargan v2:diverse image synthesis for multiple domains[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Seattle,2020:8188-8197. |
| 16 | Park T, Liu M Y, Wang T C,et al.GauGAN:semantic image synthesis with spatially adaptive normalization[M].New York:ACM,2019. |
| 17 | Karras T, Aittala M, Laine S,et al.Alias‑free generative adversarial networks[J].Advances in Neural Information Processing Systems,2021,34(1):852-863. |
| 18 | Mirza M, Osindero S.Conditional generative adversarial nets [EB/OL].(2014-10-06)[2023-03-04].. |
| 19 | Antipov G, Baccouche M, Dugelay J L.Face aging with conditional generative adversarial networks[C]//2017 IEEE International Conference on Image Processing.Beijing,2017:2089-2093. |
| 20 | Zhang Z F, Song Y, Qi H R.Age progression/regression by conditional adversarial autoencoder[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Honolulu,2017:5810-5818. |
| 21 | Wang Z W, Tang X, Luo W X,et al.Face aging with identity‑preserved conditional generative adversarial networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City,2018:7939-7947. |
| 22 | Yang H Y, Huang D, Wang Y H,et al.Learning face age progression:a pyramid architecture of gans[C]//IEEE Conference on Computer Vision and Pattern Recognition.Salt Lake City,2018:31-39. |
| 23 | Yang H Y, Huang D, Wang Y H,et al.Learning continuous face age progression:a pyramid of gans[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2021,43(2):499-515. |
| 24 | Liu Y F, Li Q, Sun Z N.Attribute‑aware face aging with wavelet‑based generative adversarial networks[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Long Beach,2019:11877-11886. |
| 25 | Shao J, Bui T D.Wavelet‑based multi‑level generative adversarial networks for face aging[C]//The 32nd British Machine Vision Conference.Virtual:British Machine Vision Association,2021:1388-1399. |
| 26 | Li P P, Hu Y B, Li Q,et al.Global and local consistent age generative adversarial networks[C]//International Conference on Pattern Recognition.Beijing,2018:1073-1078. |
| 27 | Huang Z Z, Chen S Z, Zhang J P,et al.PFA‑GAN:progressive face aging with generative adversarial network[J].IEEE Transactions on Information Forensics and Security,2020,15(16):2031-2045. |
| 28 | Li Q, Liu Y F, Sun Z N.Age progression and regression with spatial attention modules[C]//Proceedings of the AAAI Conference on Artificial Intelligence.New York:AAAI,2020:11378-11385. |
| 29 | Huang Z Z, Zhang J P, Shan H M.When age‑invariant face recognition meets face age synthesis:a multi‑task learning framework[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.Virtual,2021:7282-7291. |
| 30 | Lample G, Zeghidour N, Usunier N,et al.Fader networks:manipulating images by sliding attributes[C]//Annual Conference on Neural Information Processing Systems.Long Beach:MIT Press,2017:5963-5972. |
| 31 | Arjovsky M, Chintala S, Bottou L.Wasserstein GAN [EB/OL].(2017-01-26)[2023-03-04].. |
| 32 | Gulrajani I, Ahmed F, Arjovsky M,et al.Improved training of Wasserstein gans[C]//Annual Conference on Neural Information Processing Systems.Long Beach:MIT Press,2017:5769-5779. |
| 33 | Chen B C, Chen C S, Hsu W H.Face recognition and retrieval using cross‑age reference coding with cross‑age celebrity dataset[J].IEEE Transactions on Multimedia,2015,17(6):804-815. |
| [1] | 刘纪红, 张律恒, 杨海旭. 一种细胞荧光显微图像饱和伪影修复算法[J]. 东北大学学报(自然科学版), 2024, 45(7): 921-927. |
| [2] | 孙颖, 李泽, 张雪英. 基于约束式双通道模型的语音情感识别[J]. 东北大学学报(自然科学版), 2023, 44(11): 1537-1542. |
| [3] | 张雪峰, 许华文, 杨棉子美. 一种基于条件生成对抗网络的高感知图像压缩方法[J]. 东北大学学报(自然科学版), 2022, 43(6): 783-791. |
| [4] | 李大鹏, 赵琪珲, 邢铁军, 赵大哲. 基于分层注意力循环神经网络的司法案件刑期预测[J]. 东北大学学报(自然科学版), 2022, 43(3): 344-349. |
| [5] | 罗家健, 冯宝, 陈相猛, 顾正晖. 基于生成对抗网络的肺结节良恶性诊断算法[J]. 东北大学学报(自然科学版), 2022, 43(1): 24-32. |
| [6] | 李晨, 张家伟, 张昊, 汪茜. 基于生成对抗网络的低分化宫颈癌病理图像分类[J]. 东北大学学报:自然科学版, 2020, 41(7): 1054-1061. |
| [7] | 孟琭, 钟健平, 李楠. 基于GAN的医学图像仿真数据集生成算法[J]. 东北大学学报:自然科学版, 2020, 41(3): 332-336. |
| [8] | 魏颖, 徐楚翘, 刁兆富, 李伯群. 基于生成对抗网络的多目标行人跟踪算法[J]. 东北大学学报(自然科学版), 2020, 41(12): 1673-1680. |
| [9] | 徐林, 郑晓彤, 付博, 田歌. 基于改进GAN算法的电机轴承故障诊断方法[J]. 东北大学学报:自然科学版, 2019, 40(12): 1679-1684. |
| [10] | 徐久强, 洪丽萍, 朱宏博, 赵海. 一种用于肺结节恶性度分类的生成对抗网络[J]. 东北大学学报:自然科学版, 2018, 39(11): 1556-1561. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||