东北大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (5): 113-125.DOI: 10.12068/j.issn.1005-3026.2025.20230307
• 资源与土木工程 • 上一篇
收稿日期:
2023-11-10
出版日期:
2025-05-15
发布日期:
2025-08-07
通讯作者:
林秀丽
作者简介:
林秀丽(1974—),女,辽宁抚顺人,东北大学副教授基金资助:
Xiu-li LIN(), Min FAN, Jin-shuo YANG, Jing-xian LIU
Received:
2023-11-10
Online:
2025-05-15
Published:
2025-08-07
Contact:
Xiu-li LIN
摘要:
为解决在通风系统的非理想测试断面处难以进行通风参数的准确测量问题,基于数值模拟方法,探究了管径、风速、曲率直径比、颗粒物质量浓度、粒径、密度等因素对90°圆形弯管内气流及颗粒物质量浓度分布的影响,并分析了等面积圆环法和中心点法对非理想测试断面的测量误差及规律.结果表明:弯管内风速分布仅受曲率直径比的影响;颗粒物质量浓度受曲率直径比、粒径和密度的影响.等面积圆环法测得的弯头出口处风速误差最大值为7.8%;曲率直径比一定时,各测量断面误差同管径之间存在函数关系,管道中心风速与断面平均风速之间存在线性关系.等面积圆环法测得的弯头出入口颗粒物质量浓度误差均在10%以下.本研究可为在非理想测量断面进行风速和颗粒物质量浓度监测提供参考.
中图分类号:
林秀丽, 樊敏, 杨津硕, 柳静献. 90°弯头上下游风速及颗粒物质量浓度分布特征与测量[J]. 东北大学学报(自然科学版), 2025, 46(5): 113-125.
Xiu-li LIN, Min FAN, Jin-shuo YANG, Jing-xian LIU. Characteristics and Measurement of Air Velocity and Particulate Matter Mass Concentration Distribution in Upstream and Downstream of 90° Elbow[J]. Journal of Northeastern University(Natural Science), 2025, 46(5): 113-125.
图3 典型断面处实验值与模拟值比较(a)—Z/D=-1,-0.5,θ=0°,30°,45°,60°,90°; (b)—Y/D =0.5,1,1.5,2,3,5,10.
Fig.3 Comparison of experimental and simulated values at a typical cross section
图7 不同入口风速下颗粒物质量浓度分布(a)—5 m/s; (b)—16 m/s; (c)—18 m/s; (d)—20 m/s.
Fig.7 Particulate matter mass concentration distribution at different inlet velocities
图10 不同曲率直径比下的风速和颗粒物质量浓度分布(a)—1.0; (b)—1.5; (c)—2.0; (d)—2.5; (e)—3.0.
Fig.10 Air velocity and particulate matter mass concentration distribution under different curvature-diameter ratios
图12 不同曲率直径比下弯头出入口处风速误差拟合曲线(a)—入口断面; (b)—出口断面.
Fig.12 Wind speed error fitting curves at the inlet and outlet of the elbow under different curvature-diameter ratios
参数 | 等面积圆环法 | 加密等面积圆环法 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
与弯头入口 距离 | 与弯头出口 距离 | 与弯头入口 距离 | 与弯头出口 距离 | ||||||||||
0 | 2D | 0 | 2D | 4D | 6D | 0 | 2D | 0 | 2D | 4D | 6D | ||
18 | 0.7 | 2.1 | 2.9 | -7.1 | -2.0 | 11.6 | -0.4 | 0.3 | -5.5 | -2.5 | -0.9 | 3.1 | |
20 | 2.4 | 1.0 | 0.2 | -7.2 | 0.6 | 3.5 | 0.0 | 0.0 | -3.7 | -0.5 | 0.9 | 5.9 | |
2.50 | -2.9 | -6.2 | 1.8 | -8.0 | 3.3 | 3.1 | 0.5 | -1.3 | 0.1 | -5.6 | -1.0 | 8.2 | |
9.69 | 5.9 | 5.0 | -3.5 | -4.1 | -2.0 | 5.7 | 1.6 | 1.1 | -3.9 | -1.8 | -1.6 | 3.3 | |
10.00 | 3.0 | 1.5 | -3.6 | -3.0 | 0.9 | 4.5 | 1.8 | -1.5 | 0.2 | 2.6 | -1.6 | 1.4 | |
25.00 | 0.9 | 2.1 | 8.9 | 9.0 | -0.5 | -6.3 | 1.2 | -0.3 | 13.8 | 1.5 | -4.1 | -9.6 | |
2.0 | 3.2 | 0.1 | 1.1 | -4.0 | -1.1 | 7.9 | -5.0 | -0.7 | 0.7 | -1.9 | 1.7 | 4.7 | |
0.6 | -8.5 | 1.4 | 3.1 | -3.5 | 2.4 | 1.2 | -0.7 | -0.6 | -1.5 | -2.3 | 0.2 | 1.8 | |
10 | 3.4 | -2.2 | -3.5 | -4.2 | -2.4 | 5.4 | 4.3 | -1.2 | -3.9 | -1.9 | 1.4 | 5.8 | |
20 | 2.3 | 0.0 | 1.2 | -4.7 | -3.6 | 3.0 | -2.2 | 0.6 | -0.9 | -2.7 | -3.3 | 2.9 |
表1 两种等面积圆环法的测量误差 (%)
Table 1 Measurement error of two equal area ring methods
参数 | 等面积圆环法 | 加密等面积圆环法 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
与弯头入口 距离 | 与弯头出口 距离 | 与弯头入口 距离 | 与弯头出口 距离 | ||||||||||
0 | 2D | 0 | 2D | 4D | 6D | 0 | 2D | 0 | 2D | 4D | 6D | ||
18 | 0.7 | 2.1 | 2.9 | -7.1 | -2.0 | 11.6 | -0.4 | 0.3 | -5.5 | -2.5 | -0.9 | 3.1 | |
20 | 2.4 | 1.0 | 0.2 | -7.2 | 0.6 | 3.5 | 0.0 | 0.0 | -3.7 | -0.5 | 0.9 | 5.9 | |
2.50 | -2.9 | -6.2 | 1.8 | -8.0 | 3.3 | 3.1 | 0.5 | -1.3 | 0.1 | -5.6 | -1.0 | 8.2 | |
9.69 | 5.9 | 5.0 | -3.5 | -4.1 | -2.0 | 5.7 | 1.6 | 1.1 | -3.9 | -1.8 | -1.6 | 3.3 | |
10.00 | 3.0 | 1.5 | -3.6 | -3.0 | 0.9 | 4.5 | 1.8 | -1.5 | 0.2 | 2.6 | -1.6 | 1.4 | |
25.00 | 0.9 | 2.1 | 8.9 | 9.0 | -0.5 | -6.3 | 1.2 | -0.3 | 13.8 | 1.5 | -4.1 | -9.6 | |
2.0 | 3.2 | 0.1 | 1.1 | -4.0 | -1.1 | 7.9 | -5.0 | -0.7 | 0.7 | -1.9 | 1.7 | 4.7 | |
0.6 | -8.5 | 1.4 | 3.1 | -3.5 | 2.4 | 1.2 | -0.7 | -0.6 | -1.5 | -2.3 | 0.2 | 1.8 | |
10 | 3.4 | -2.2 | -3.5 | -4.2 | -2.4 | 5.4 | 4.3 | -1.2 | -3.9 | -1.9 | 1.4 | 5.8 | |
20 | 2.3 | 0.0 | 1.2 | -4.7 | -3.6 | 3.0 | -2.2 | 0.6 | -0.9 | -2.7 | -3.3 | 2.9 |
[1] | 国家卫生健康委发布2021年全国职业病报告 [J]. 职业卫生与应急救援, 2022, 40(4): 416. |
National Health Commission released 2021 national occupational disease report [J]. Journal of Occupational Health and Emergency Rescue, 2022, 40(4): 416. | |
[2] | Oberdoester G, Oberdoester E, Oberdoester J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles [J]. Environmental Health Perspectives, 2005, 113(7): 823-839. |
[3] | 刘殿武. 用速度场系数简化风速测量方法 [J]. 煤矿安全, 2005 (5): 42-43. |
Liu Dian-wu. Simplifying wind speed measurement method with velocity field coefficient[J]. Safety in Coal Mines, 2005 (5): 42-43. | |
[4] | Gladyszewska-Fiedoruk K, Demianiuk A B, Gajewski A, et al. Measurement of velocity distribution for air flow through perforated plastic foil ducts [J]. Energy and Buildings, 2011, 43(2/3): 374-378. |
[5] | Ostrowski P, Remiorz L. Measurement of gas flow in short ducts, also rectangular [J]. Flow Measurement and Instrumentation, 2013, 30: 1-9. |
[6] | Care I, Bonthoux F, Fontaine J R. Measurement of air flow in duct by velocity measurements[C]// Proceedings of the 16th International Congress of Metrology. Paris: EDP Sciences, 2013: 00010. |
[7] | Chow J C, Watson J G, Wang X, et al. Review of filters for air sampling and chemical analysis in mining workplaces [J]. Minerals, 2022, 12(10):1314. |
[8] | Pampena J D, Cauda E G, Chubb L G, et al. Use of the field-based silica monitoring technique in a coal mine: a case study [J]. Mining Metallurgy & Exploration, 2020, 37(2): 717-726. |
[9] | Molaie S, Lino P. Review of the newly developed, mobile optical sensors for real-time measurement of the atmospheric particulate matter concentration [J]. Micromachines, 2021, 12(4):416. |
[10] | Molaie S, Lino P. Theoretical design of the scattering based sensor for analysis of the vehicle tailpipe emission [J]. Micromachines, 2020, 11(12):1085. |
[11] | Bezantakos S, Costi M, Baempoinis K, et al. Qualification of the Alpha sense optical particle counter for inline air quality monitoring [J]. Aerosol Science and Technology, 2020, 55(3): 361-370. |
[12] | 梁艳, 张增福, 陈文亮, 等. 基于β射线法的新型PM2.5自动监测系统研究 [J]. 传感技术学报, 2014, 27(10): 1418-1422. |
Liang Yan, Zhang Zeng-fu, Chen Wen-liang, et al. Research of new type PM2.5 automated monitoring system based on β-ray method [J]. Chinese Journal of Sensors and Actuators, 2014, 27(10): 1418-1422. | |
[13] | Chen J G, Li D W, Liu G Q, et al. Development of a coal dust concentration sensor based on the electrostatic induction method [J]. ACS Omega, 2023, 8(14): 13059-13067. |
[14] | Ribalko A N, Charty P V, Shemanin V G. Dust concentration measurement laser instrument at industrial conditions[C]// Proceedings of the International Conference on Lasers for Measurements and Information Transfer. St Petersburg: SPIE, 2000: 130-136. |
[15] | Abou Khousa M A, Aldurra A, Alwahedi K, et al. Hermetically sealed microwave probe for in-situ detection of black powder in gas pipelines [C]// Proceedings of the IEEE International Instrumentation and Measurement Technology Conference (I2MTC). Montevideo, 2014: 1115-1119. |
[16] | 李立, 姬忠礼, 许乔奇, 等. 新型高压天然气管道内固体颗粒物在线检测装置及其应用 [J]. 天然气工业, 2012, 32(12): 81-84. |
Li Li, Ji Zhong-li, Xu Qiao-qi, et al. On-line detection device for solid particulate matter in novel high-pressure natural gas pipeline and its application[J]. Natural Gas Industry, 2012, 32(12): 81-84. | |
[17] | Sudo K, Sumida M, Hibara H. Experimental investigation on turbulent flow in a circular-sectioned 90-degree bend [J]. Experiments in Fluids, 1998, 25(1): 42-49. |
[18] | Kim J, Yadav M, Kim S. Characteristics of secondary flow induced by 90 degree elbow in turbulent pipe flow [J]. Engineering Applications of Computational Fluid Mechanics, 2014, 8(2): 229-239. |
[19] | 熊攀, 鄢曙光. 基于Rosin-Rammler函数的数值模拟对旋风除尘器粒径分布规律的研究 [J]. 粉末冶金工业, 2019, 29(2): 29-32. |
Xiong Pan, Yan Shu-guang. Numerical simulation of particle size distribution of cyclone dust collector based on Rosin-Rammler function [J]. Powder Metallurgy Industry, 2019, 29(2): 29-32. |
[1] | 韩宇超, 谢清华, 倪培远, 厉英. 旋流喷吹角度对RH精炼多相流及混匀行为的影响[J]. 东北大学学报(自然科学版), 2025, 46(4): 16-23. |
[2] | 王述红, 任明珠, 李世宇, 董福瑞. 近距离穿越既有车站不等强度注浆变形的控制[J]. 东北大学学报(自然科学版), 2025, 46(2): 126-135. |
[3] | 于珂凡, 赵亮, 董辉, 何永清. 柔性柱初始倾角对微通道传热增强的影响[J]. 东北大学学报(自然科学版), 2025, 46(2): 42-49. |
[4] | 李中正, 吴朝霞, 王金杨, 康增鑫. 铁矿石烧结过程传质传热数值模拟[J]. 东北大学学报(自然科学版), 2025, 46(1): 35-43. |
[5] | 袁熙, 马明旭, 陈杰, 王哲英. 无油涡旋真空泵主轴冷却装置数值模拟研究[J]. 东北大学学报(自然科学版), 2025, 46(1): 92-98. |
[6] | 郑智群, 黄贤振, 姜智元, 苗兴琳. 基于Kriging模型的螺旋波纹管流动换热特性及结构优化[J]. 东北大学学报(自然科学版), 2024, 45(7): 992-1001. |
[7] | 左晋松, 狄跃忠, 耿佃桥. 电沉积制备氢氧化镁多物理场的数值模拟[J]. 东北大学学报(自然科学版), 2024, 45(5): 652-659. |
[8] | 张晋瑞, 姚锡文, 许开立, 孙修. 矿井智能巡检车CO传感器搭载位置优化[J]. 东北大学学报(自然科学版), 2024, 45(5): 721-728. |
[9] | 韦忍, 苏志坚, 杜以达, 王燕斌. 复合磁场作用下板坯结晶器内钢液流动、传热与凝固的数值模拟[J]. 东北大学学报(自然科学版), 2024, 45(4): 514-522. |
[10] | 王雨萌, 关凯, 朱万成, 刘洪磊. 基于现场监测与数值模拟结合的采动诱发围岩失稳与地表沉降研究[J]. 东北大学学报(自然科学版), 2024, 45(2): 234-243. |
[11] | 李刚, 周雷, 张晓宇, 张凯. 连通设备粉尘爆炸泄压面积确定方法[J]. 东北大学学报(自然科学版), 2024, 45(2): 276-281. |
[12] | 陈百玲, 殷悦, 高海洋, 王连广. 预制钢板夹心混凝土组合板与柱连接及其有限元分析[J]. 东北大学学报(自然科学版), 2024, 45(10): 1476-1484. |
[13] | 侯俊旭, 杨天鸿, 马凯, 赵永. “亿级”自由度数值模拟技术及其工程应用[J]. 东北大学学报(自然科学版), 2023, 44(9): 1298-1308. |
[14] | 孟庆有, 袁致涛, 杨建超. 微细粒黑钨矿疏水絮凝浮选中聚团形成机制[J]. 东北大学学报(自然科学版), 2023, 44(7): 1002-1008. |
[15] | 段少陪, 李宝宽, 穆永鸿, 荣文杰. 预热竖窑气固传热与水分蒸发数值模拟[J]. 东北大学学报(自然科学版), 2023, 44(5): 626-634. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||