东北大学学报(自然科学版) ›› 2025, Vol. 46 ›› Issue (12): 19-28.DOI: 10.12068/j.issn.1005-3026.2025.20240103

• 信息与控制 • 上一篇    下一篇

基于HRV多尺度分析的糖尿病前期检测方法

李鸿儒, 李同同, 石康康, 杨英华   

  1. 东北大学 信息科学与工程学院,辽宁 沈阳 110819
  • 收稿日期:2024-05-05 出版日期:2025-12-15 发布日期:2026-02-09
  • 通讯作者: 李鸿儒
  • 作者简介:杨英华(1970—),男,辽宁辽阳人,东北大学教授,博士生导师.
  • 基金资助:
    国家自然科学基金资助项目(62073062)

Prediabetes Detection Method Based on Multi-scale Analysis of HRV

Hong-ru LI, Tong-tong LI, Kang-kang SHI, Ying-hua YANG   

  1. School of Information Science & Engineering,Northeastern University,Shenyang 110819,China.
  • Received:2024-05-05 Online:2025-12-15 Published:2026-02-09
  • Contact: Hong-ru LI

摘要:

糖尿病前期(prediabetes)是糖尿病发展过程中葡萄糖代谢异常的重要阶段,及早诊断对于全球糖尿病防控至关重要.为探索糖尿病前期的无创检测方法,基于心率变异性(heart rate variability, HRV)信号,通过引入多尺度分析策略,揭示信号的全局信息以及不同尺度内微小但重要的变化,并采用CatBoost算法完成分类任务.结果表明,该方法在数据集上取得88.52%的准确率、83.40%的敏感度、91.82%的特异度、86.73%的精确度和87.40%的F1分数.本研究为糖尿病前期的诊断提供了新思路,尤其适用于可穿戴设备,为实现日常自我健康监测及疾病防控提供了潜在解决方案.

关键词: 糖尿病前期, 心率变异性, 多尺度分析, 小波散射网络, CatBoost算法

Abstract:

Prediabetes is an important stage of abnormal glucose metabolism in the development of diabetes, and its early diagnosis is crucial for global diabetes prevention and control. To explore non-invasive detection methods for prediabetes, heart rate variability (HRV) signals were utilized. By introducing a multi-scale analysis strategy, the global information of the signals was revealed, as well as subtle but important changes at different scales. The CatBoost algorithm was used for classification task. The results show that this method achieves an accuracy of 88.52%, a sensitivity of 83.40%, a specificity of 91.82%, a precision of 86.73%, and an F1-score of 87.40% on the dataset. This study provides a new approach for the diagnosis of prediabetes. The results are especially suitable for wearable devices, offering a potential solution for daily self-health monitoring and disease prevention.

Key words: prediabetes, heart rate variability, multi-scale analysis, wavelet scattering network, CatBoost algorithm

中图分类号: