东北大学学报(自然科学版) ›› 2007, Vol. 28 ›› Issue (3): 333-336.DOI: -

• 论著 • 上一篇    下一篇

基于知识和外观方法相结合的后方车辆检测

文学志;赵宏;王楠;袁淮;   

  1. 东北大学信息科学与工程学院;东北大学信息科学与工程学院;东北大学信息科学与工程学院;东软集团有限公司汽车电子先行技术研究中心 辽宁沈阳110004;辽宁沈阳110004;辽宁沈阳110004;辽宁沈阳110179
  • 收稿日期:2013-06-24 修回日期:2013-06-24 出版日期:2007-03-15 发布日期:2013-06-24
  • 通讯作者: Wen, X.-Z.
  • 作者简介:-
  • 基金资助:
    国际科技合作重要项目(2005DFA10260)

Rear-vehicle detection combining both knowledge-based and appearance-based methods

Wen, Xue-Zhi (1); Zhao, Hong (1); Wang, Nan (2); Yuan, Huai (2)   

  1. (1) School of Information Science and Engineering, Northeastern University, Shenyang 110004, China; (2) Advanced Automotive Electronic Technology Research Center, Neusoft Group Ltd., Shenyang 110179, China
  • Received:2013-06-24 Revised:2013-06-24 Online:2007-03-15 Published:2013-06-24
  • Contact: Wen, X.-Z.
  • About author:-
  • Supported by:
    -

摘要: 单独应用基于知识的方法或者单独应用基于外观方法检测是否存在车辆有一定的局限性,因此提出将二者结合起来用于静态图像后方车辆的检测.首先,利用分割算法获得感兴趣的区域(region of interest,ROI),利用基于知识(如车底阴影、颜色等信息)的方法,将被确认为是非车辆(背景)的ROI过滤掉,然后再对过滤后的结果应用基于外观的方法进行车辆检测.在不同的道路(高速公路、城市普通道路和城市窄道)条件以及白天不同光照条件下对车辆进行检测,结果表明,该算法的识别可靠性更高,适应性更好.

关键词: 智能运输系统, 辅助驾驶系统, 车辆检测, 特征提取, 支持向量机

Abstract: There is unavoidably a limit to either knowledge-based or appearance-based methods when using any of them singly to detect the existence of vehicles. An algorithm combining both of them is therefore proposed to detect rear-vehicles in static images. First, the ROIs (regions of interest) obtained from segmentation algorithm are filtered which are regarded as belonging to background by using knowledge-based methods such as the shadow underneath a vehicle and color information. Then, the vehicles are detected with appearance-based methods on the remains. The detection results of vehicles traveling on highways, urban common roads and urban narrow roads under various illumination conditions on daytime indicated that the proposed algorithm has better reliability and higher adaptability than either of the algorithms singly based on knowledge or appearance.

中图分类号: