东北大学学报(自然科学版) ›› 2013, Vol. 34 ›› Issue (5): 637-641.DOI: -

• 信息与控制 • 上一篇    下一篇

基于自适应结构张量的FCM改进算法

崔兆华1,李洪军2,李文娜1,高立群1   

  1. (1.东北大学信息科学与工程学院,辽宁沈阳110819;2.白城医学高等专科学校,吉林白城137000)
  • 收稿日期:2012-12-05 修回日期:2012-12-05 出版日期:2013-05-15 发布日期:2013-07-09
  • 通讯作者: 崔兆华
  • 作者简介:崔兆华(1981-),女,吉林白城人,东北大学博士研究生,65041部队助理工程师;高立群(1949-),男,辽宁沈阳人,东北大学教授,博士生导师.
  • 基金资助:
    国家自然科学基金资助项目(51005042);国家高技术研究发展计划项目(2012AA062002);中央高校基本科研业务费专项资金资助项目(N100403005).

An Improved FCM Algorithm Based on Adaptive Structure Tensor〓

CUI Zhaohua1, LI Hongjun2, LI Wenna1, GAO Liqun1   

  1. 1.School of Information Science & Engineering, Northeastern University, Shenyang 110819, China; 2.Baicheng Medical College, Baicheng 137000, China.
  • Received:2012-12-05 Revised:2012-12-05 Online:2013-05-15 Published:2013-07-09
  • Contact: CUI Zhaohua
  • About author:-
  • Supported by:
    -

摘要: 针对传统模糊C均值聚类算法对图像特征描述单一,易受图像复杂纹理干扰而出现误分割的问题,提出一种基于自适应结构张量的FCM算法,并将其应用于图像分割.打破传统高斯滤波器在滤波方向和角度上所受限制,采用基于各向异性滤波的结构张量;引入图像边缘密度函数,用以衡量图像节点的平滑性,自适应地计算各向异性滤波函数所占比例;定义一种自适应结构张量相似性度量标准,用以计算图像中节点与聚类中心点的结构相似性,有效地代替了传统FCM中的灰度相似性度量标准;采用一种新颖的节点间距离度量公式来计算图像中节点与聚类中心点的差异.仿真结果表明,对结构复杂的图像,改进算法获得了更加精确的分割结果.

关键词: 图像分割, 模糊C均值聚类算法, 结构张量, 高斯函数, 各向异性滤波

Abstract: The traditional FCM algorithm has the shortcomings of simple image feature description, and it can be easily disturbed by complex texture in wrong segmenting. An adaptive filtered structure tensor based FCM algorithm for image segmentation was proposed to solve the problems. Firstly, a new anisotropy filtering based structure tensor was proposed to break the constraints of filtering direction and rotation of traditional filtering. Secondly, the image edge density function for adaptively calculating anisotropy filtering proportion was introduced into FCM algorithm to accurately measure image node gliding property. Then, an adaptive filter structure tensor similarity measurement was defined to replace the gray level similarity measurement in the traditional FCM algorithm. Finally, a new distance measure function was adopted to calculate the distance between a node and the clusteringcenter. The simulation results showed that more precise segmentation results could be obtained from complicated texture structure images by the presented algorithm.

Key words: image segmentation, FCM algorithm, structure tensor, Gaussian function, anisotropic filtering

中图分类号: