东北大学学报(自然科学版) ›› 2013, Vol. 34 ›› Issue (5): 637-641.DOI: -
崔兆华1,李洪军2,李文娜1,高立群1
CUI Zhaohua1, LI Hongjun2, LI Wenna1, GAO Liqun1
摘要: 针对传统模糊C均值聚类算法对图像特征描述单一,易受图像复杂纹理干扰而出现误分割的问题,提出一种基于自适应结构张量的FCM算法,并将其应用于图像分割.打破传统高斯滤波器在滤波方向和角度上所受限制,采用基于各向异性滤波的结构张量;引入图像边缘密度函数,用以衡量图像节点的平滑性,自适应地计算各向异性滤波函数所占比例;定义一种自适应结构张量相似性度量标准,用以计算图像中节点与聚类中心点的结构相似性,有效地代替了传统FCM中的灰度相似性度量标准;采用一种新颖的节点间距离度量公式来计算图像中节点与聚类中心点的差异.仿真结果表明,对结构复杂的图像,改进算法获得了更加精确的分割结果.
中图分类号: