东北大学学报:自然科学版 ›› 2014, Vol. 35 ›› Issue (4): 489-493.DOI: 10.12068/j.issn.1005-3026.2014.04.008

• 信息与控制 • 上一篇    下一篇

基于LM法的光束法平差巡视器导航定位

马友青1,贾永红1,刘少创2,贾阳3   

  1. (1 武汉大学 遥感信息工程学院, 湖北 武汉430072; 2 中国科学院 遥感与数字地球研究所, 北京100101;3 北京空间飞行器总体设计部, 北京100094)
  • 收稿日期:2013-06-07 修回日期:2013-06-07 出版日期:2014-04-15 发布日期:2013-11-22
  • 通讯作者: 马友青
  • 作者简介:马友青(1987-),男,安徽合肥人,武汉大学博士研究生;贾永红(1966-),男,湖北武汉人,武汉大学教授,博士生导师;刘少创(1963-),男,北京人,中国科学院遥感与数字地球研究所研究员,博士生导师.
  • 基金资助:
    国家自然科学基金资助项目(41071298).

Bundle Adjustment Based on LM Algorithm for Rover Navigation and Localization

MA Youqing1, JIA Yonghong1, LIU Shaochuang2, JIA Yang3   

  1. 1. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430072, China; 2. Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China; 3. Beijing Institute of Spacecraft System Engineering, Beijing 100094, China.
  • Received:2013-06-07 Revised:2013-06-07 Online:2014-04-15 Published:2013-11-22
  • Contact: MA Youqing
  • About author:-
  • Supported by:
    -

摘要: 光束法平差是一种通过高斯牛顿法进行最优估计的方法,在利用相机图像进行巡视器导航定位时起着重要的作用.为获得在缺少足够控制信息的月面环境下的高精度定位信息,提出一种利用列文伯格-马夸尔特算法(LM算法)代替高斯牛顿算法,进行图像光束法平差的巡视器导航定位方法.根据LM算法的核心思想和巡视器图像的构网特征,构建光束法平差模型,并给出了合适的阻尼策略和验后权估计方法.实验结果表明,基于LM算法的光束法平差巡视器导航定位,可以克服高斯牛顿算法适用性弱的缺点,具有较高的定位精度和理想的收敛速率.

关键词: 光束法平差, 高斯牛顿法, 列文伯格-马夸尔特法, 导航定位, 验后权估计

Abstract: An exact rover localization algorithm in bundle adjustment (BA) was proposed, which used LevenbergMarquardt algorithm instead of GaussNewton algorithm to obtain highprecision localization information. It could be used especially in the cases of lacking adequate control information in the lunar surface environment. According to the core ideas of the LevenbergMarquardt algorithm and lunar image structure network, the error estimation based on bundle adjustment was formulated, and then the appropriate damping strategy and posterior weights estimation were given. Simulation results showed that the disadvantages of weak applicability of GaussNewton algorithm could be overcome by using the proposed algorithm, and it has a high localization accuracy and iterative convergence rate.

Key words: bundle adjustment, GaussNewton algorithm, LevenbergMarquardt algorithm, navigation and localization, posterior weights estimation

中图分类号: