东北大学学报:自然科学版 ›› 2015, Vol. 36 ›› Issue (3): 305-308.DOI: 10.12068/j.issn.1005-3026.2015.03.001

• 信息与控制 •    下一篇

一种多尺度球磨机筒体振动频谱分析与建模方法

刘卓1, 柴天佑1, 汤健2   

  1. (1. 东北大学 流程工业综合自动化国家重点实验室, 辽宁 沈阳110819; 2. 中国人民解放军92941部队, 辽宁 葫芦岛125001)
  • 收稿日期:2014-01-07 修回日期:2014-01-07 出版日期:2015-03-15 发布日期:2014-11-07
  • 通讯作者: 刘卓
  • 作者简介:刘卓(1979-),女,辽宁锦州人,东北大学博士研究生; 柴天佑(1947-),男,甘肃兰州人,东北大学教授,博士生导师,中国工程院院士.
  • 基金资助:
    国家自然科学基金资助项目(61020106003,61273031,61304107); “十二五”国家科技支撑计划项目(2012BAF19G00); 国家博士后科学基金资助项目(2013M532118); 教育部新世纪人才支持计划项目(NCET-12-0104); 辽宁省优秀人才计划项目(LJQ2012020).

Multi-scale Shell Vibration Frequency Spectrum Analysis and Modeling Approach of Ball Mill

LIU Zhuo1, CHAI Tian-you1, TANG Jian2   

  1. 1. State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China; 2. Unit 92941, PLA, Huludao 125001, China.
  • Received:2014-01-07 Revised:2014-01-07 Online:2015-03-15 Published:2014-11-07
  • Contact: LIU Zhuo
  • About author:-
  • Supported by:
    -

摘要: 针对基于传统快速傅里叶变换获得的单尺度筒体振动频谱难以有效揭示磨机研磨机理和筒体振动信号组成,以及现有文献中经验模态分解(EMD)技术预测精度低的问题,提出了基于偏最小二乘算法的多尺度筒体振动频谱分析与建模方法.该方法首先采用经验模态分解技术将筒体振动信号分解为具有不同时间尺度的内禀模态函数(IMF),接着通过傅里叶变换获得多尺度频谱,最后采用基于偏最小二乘算法的潜变量贡献率分析和选择不同尺度频谱,并建立融合不同尺度频谱的磨机负荷参数软测量模型.采用实验球磨机的实验数据仿真验证了所提方法的有效性.

关键词: 多尺度频谱, 经验模态分解(EMD), 偏最小二乘算法(PLS), 筒体振动, 磨机负荷

Abstract: Single-scale shell vibration frequency spectrum cannot reflect grinding mechanism of ball mill and analyze the composition of shell vibration signal. The empirical mode decomposition (EMD) based on soft sensor methods in present literature have poor prediction accuracy. Aiming at these problems, a new multi-scale shell vibration frequency spectrum analysis and modeling approach based on the partial least squares (PLS) algorithm was proposed. Firstly, the shell vibration acceleration signal was decomposed into different time-scale intrinsic mode functions (IMF) adaptively. Then, multi-scale frequency spectrum was obtained by using fast Fourier transform to different IMFs. Finally, different scale frequency spectrum was analyzed and selected by the latent variables contribution of the PLS algorithm. In addition, mill load parameters’ soft sensor model was constructed by fusing these selected multi-scale frequency spectrum. Simulation results based on experimental data of the laboratory ball mill validate the effectiveness of the proposed method.

Key words: multi-scale frequency spectrum, empirical mode decomposition (EMD), partial least squares(PLS) algorithm, shell vibration, mill load

中图分类号: