|
基于实值遗传算法的模糊神经网络辨识器
王振雷;顾树生
2000, 21 (4):
354-356.
DOI: -
提出了一种基于实值遗传算法(RVGA)的模糊神经网络辨识器·它常被用于非线性动态系统的辨识·通常模糊神经网络辨识器参数的训练采用反向传播学习算法(BP),但是用BP算法有训练时间长,容易陷入局部极小的问题·采用RVGA来训练模糊辨识器的参数,由于GA算法具有并行运算,多点寻优等特点,所以它运算速度快,容易实现全局寻优·传统的GA算法采用二进制编码,计算繁复且占用大量的空间·采用一种新的实数编码方法,在实数域上进行遗传运算,操作简便,特别适用于需要调整的参数较多的情况·仿真结果表明,该辨识器具有良好的逼近性能和较快的训练速度·
参考文献 |
相关文章 |
计量指标
|