针对地震预警震级估算问题,提出一种基于卷积神经网络(convolutional neural network,CNN)的震级分段估算方法,该方法以单台站的P波初至后3 s时间的波形作为输入,输出结果为地震波形所属的震级区段(大地震,近震震级ML≥5.0;小地震,ML<5.0).如果波形属于大地震区段,直接发出警报;如果波形属于小地震区段,再进行具体震级的估算.对于震级区段估算,CNN模型的准确率可达98.04%.根据震级估算参数τc和Pd估算的小地震震级平均绝对误差(mean absolute error,MAE)分别为0.20和0.31.结果表明,预警震级分段估算方法可以准确预警大地震,减少大地震漏报率;同时使得小地震震级估算结果更为准确.