LU Zhi-guo, WANG Shi-xiong, LIN Meng-lei. Study on Decoupling Sliding Mode Control with RBF Network for the Interference Compensation of Seesaw System[J]. Journal of Northeastern University(Natural Science), 2021, 42(5): 679-686.
[1]Ramos L E,Castillo-Toledo B,Negretc S.Nonlinear regulation of a seesaw inverted pendulum[C]//Proceedings of the IEEE International Conference on Control Applications.Trieste:IEEE,1998:1399-1403. [2]张卓,张井岗.跷跷板系统的模糊控制策略研究[J].太原科技大学学报,2016,37(6):447-453.(Zhang Zhuo,Zhang Jing-gang.A fuzzy control method for seesaw system [J].Journal of Taiyuan University of Science and Technology, 2016,37(6):447-453.) [3]Lin J,Ding Y S,Chang J.Balancing and swinging-up control for cart-pendulum-seesaw system by decomposed fuzzy coordination control[J].Journal of Vibration and Control, 2014,20(6):925-942. [4]Lin J,Lai H Y,Chang J.Balancing control with neuro-fuzzy approach for electrical cart-seesaw system[C]//American Control Conference.Boston:IEEE,2016:3958-3963. [5]Wu C J.Quasi time-optimal PID control of multivariable systems:a seesaw example[J].Journal of the Chinese Institute of Engineers,1999,22(5):617-625. [6]Nagarale R M,Patre B M.Decoupled neural fuzzy sliding mode control of nonlinear systems[C]// IEEE International Conference on Fuzzy Systems.Hyderabad:IEEE,2013:1-8. [7]韩江.跷跷板系统变结构控制研究[D].西安:西安电子科技大学,2006.(Han Jiang.Study on variable structure control of seesaw system [D].Xi’an:Xidian University,2006.) [8]Tsai C H,Chung H Y,Yu F M.Neuro-sliding mode control with its applications to seesaw systems[J].IEEE Transactions on Neural Networks,2004,15(1):124-134. [9]Fan Z Y,Zhang J G.Neural network adaptive sliding mode control to seesaw systems[C]//Proceedings of the 29th Chinese Control Conference.Beijing:IEEE,2010:430-433. [10]Hung L C,Chung H Y.Decoupled control using neural network-based sliding-mode controller for nonlinear systems[J].Expert Systems with Applications,2007,32(4):1168-1182. [11]王宏,郑天奇.基于滑模补偿的六轴机械臂RBF网络自适应控制[J].东北大学学报(自然科学版),2017,38(11):1601-1606.(Wang Hong,Zheng Tian-qi.RBF network adaptive control based on SMC compensation for six-axis manipulator [J].Journal of Northeastern University(Natural Science),2017,38(11):1601-1606.) [12]Olfati-Saber R.Global configuration stabilization for the VTOL aircraft with strong input coupling[C]// Proceedings of the 39th IEEE Conference on Decision and Control.Sydney:IEEE,2000:3588-3589. [13]Kenné G,Fotso A S,Lamnabhi-Lagarrigue F.A new adaptive control strategy for a class of nonlinear system using RBF neuro-sliding-mode technique:application to SEIG wind turbine control system[J].International Journal of Control,2017,90(4):855-872. [14]Boulouma S,Belmili H.RBF neural network sliding mode control of a PMSG based wind energy conversion system[C]//International Renewable and Sustainable Energy Conference.Marrakech:IEEE,2016:438-443. [15]Park J,Sandberg I.Universal approximation using radial-basis-function networks[J].Neural Computation,1991,3(2):246-257. [16]Panomruttanarug B,Chotikunnan P.Self-balancing iBOT-like wheelchair based on type-1 and interval type-2 fuzzy control[C]//11th International Conference on Electrical Engineering/Electronics,Computer,Telecommunications and Information Technology.Nakhon Ratchasima:IEEE,2014:1-6. [17]Gamage B C W,Parnichkun M.Pitch balancing control of a flipping two-wheel stair climbing robot[C]//First International Symposium on Instrumentation,Control,Artificial Intelligence,and Robotics.Bangkok:IEEE,2019:106-110. [18]Shino M,Tomokuni N,Murata G,et al.Wheeled inverted pendulum type robotic wheelchair with integrated control of seat slider and rotary link between wheels for climbing stairs[C]//International Workshop on Advanced Robotics and its Social Impacts.Evanston:IEEE,2014:121-126.