LI Ming, ZHANG Yan-kun, ZHAO Qi, LIANG Li. Characteristics of Hydraulic Fracture in Homogeneous Porous Rock Material Based on EPHF Model[J]. Journal of Northeastern University(Natural Science), 2021, 42(7): 996-1004.
[1]Rahman M M,Rahman M K.A review of hydraulic fracture models and development of an improved pseudo-3D model for stimulating tight oil/gas sand[J].Energy Sources,Part A:Recovery,Utilization and Environmental Effects,2010,32(1):1416-1436. [2]Shel E V,Paderin G V.Analytical solution of the pseudo-3D model for hydraulic fracturing in a storage-dominated regime[J].International Journal of Rock Mechanics and Mining Sciences,2019,114:92-100. [3]Lu Y,He M,Wu B,et al.Experimental and theoretical analysis of hydraulic fracturing and gas fracturing of rock under true triaxial compressions[J].Engineering Fracture Mechanics,2020,234:107100. [4]Li M,Guo P,Stolle D,et al.Development of hydraulic fracture zone in heterogeneous material based on smeared crack method[J].Journal of Natural Gas Science and Engineering,2016,35:761-774. [5]Gutierrez R,Sanchez C M,Roehl D,et al.XFEM modeling of stress shadowing in multiple hydraulic fractures in multi-layered formations[J].Journal of Natural Gas Science and Engineering,2019,70:102950. [6]Shimizu H,Ito T,Tamagawa T,et al.A study of the effect of brittleness on hydraulic fracture complexity using a flow-coupled discrete element method[J].Journal of Petroleum Science & Engineering,2018,160:372-382. [7]Oliaei M N,Pak A,Soga K.A coupled hydro-mechanical analysis for prediction of hydraulic fracture propagation in saturated porous media using EFG mesh-less method[J].Computers and Geotechnics,2014,55:254-266. [8]Zhuang X Y,Zhou S W,Sheng M,et al.On the hydraulic fracturing in naturally-layered porous media using the phase field method[J].Engineering Geology,2020,266:105306. [9]Bazant Z P,Lin F B.Nonlocal smeared cracking model for concrete fracture[J].Journal of Structural Engineering,1988,114:2493-2510. [10]Hu Y,Chen G L,Cheng W P,et al.Simulation of hydraulic fracturing in rock mass using a smeared crack model[J].Computers and Structures,2014,137:72-77. [11]Li M,Guo P,Stolle D,et al.Modeling hydraulic fracture in heterogeneous rock materials using permeability-based hydraulic fracture model[J].Underground Space,2020,5(2):167-183. [12]Li M,Guo P,Stolle,D,et al.Heterogeneous rock modeling method and characteristics of multistage hydraulic fracturing based on the PHF-LSM method[J].Journal of Natural Gas Science and Engineering,2020,83:103518. [13]Brace W F,Paulding B W,Scholz C.Dilatancy in the fracture of crystalline rocks[J].Journal of Geophysical Research,1966,71(16):3939-3953. [14]Nicksiar M,Martin C D.Crack initiation stress in low porosity crystalline and sedimentary rocks[J].Engineering Geology,2013,154:64-76. [15]Moghadasi L,Guadagnini G,Inzoli F,et al.Interpretation of two-phase relative permeability curves through multiple formulations and model quality criteria[J].Journal of Petroleum Science & Engineering,2015,135:738-749. [16]Corey A T.The interrelation between gas and oil relative permeabilities[J].Producers Monthly,1954,19:38-41. [17]Chierici G L.Novel relations for drainage and imbibition relative permeabilities[J].Society of Petroleum Engineers,1984,24(3):275-276. [18]Lomeland F,Ebeltoft E,Thomas W H.A new versatile relative permeability correlation[C]//Proceedings of International Symposium of the Society of Core Analysts.Toronto,2005:1-12. [19]Wasantha P L P,Konietzky H,Xu C.Effect of in-situ stress contrast on fracture containment during single-and multi-stage hydraulic fracturing[J].Engineering Fracture Mechanics,2019,205:175-189. [20]Yew C H.Mechanics of hydraulic fracturing[M].Oxford:Gulf Professional Publishing,1997. [21]Krief M,Garat J,Stellingwerff J,et al.A petrophysical interpretation using the velocities of p and s waves(full-waveform sonic) [J].The Log Analyst,1990,31(6):355-369. [22]马中高.Biot系数和岩石弹性模量的实验研究[J].石油与天然气地质,2008,29(1):135-140.(Ma Zhong-gao.Experimental investigation into Biot’s coefficient and rock elastic moduli[J].Oil & Gas Geology,2008,29(1):135-140.)(上接第985页)型的正确性.4) 理论模型敏感性分析表明,增大挤出宽度或打印层厚度可以增大表面粗糙度;但增大重叠区域宽度却可以降低表面粗糙度.5) 本文提出的理论模型有助于为今后改善FFF产品表面质量的研究提供重要的参考和技术支持.