[1]Hou B R,Li X G,Ma X M,et al.The cost of corrosion in China [J].Materials Degradation,2017(4):1-10, [2]童晶,金贤玉,田野,等.基于DIC技术的锈蚀钢筋混凝土表面开裂[J].浙江大学学报(工学版),2015,49(2):193-199,217.(Tong Jing,Jin Xian-yu,Tian Ye,et al.Study on surface cracking of corroded reinforced concrete based on DIC method[J].Journal of Zhejiang University(Engineering Science),2015,49(2):193-199,217.) [3]陈海斌,牛荻涛,浦聿修.应用人工神经网络技术评估混凝土中的钢筋锈蚀量[J].工业建筑,1999,29(2):51-55.(Chen Hai-bin,Niu Di-tao,Pu Yu-xiu.Assessment on corrosive degree of reinforcement in concrete by artificial neural networks[J].Industrial Construction,1999,29(2):51-55.) [4]伍明强.建筑混凝土钢筋锈蚀原因及检测方法研究[J].建材世界,2019,40(1):31-34.(Wu Ming-qiang.Research on reasons and detection methods of corrosion of building concrete reinforced bar[J].The World of Building Materials,2019,40(1):31-34.) [5]Hadi S,Rigoberto B.Emerging artificial intelligence methods in structural engineering[J].Engineering Structures,2018,171:170-189. [6]冷艳玲,张劲泉,毛燕.混凝土结构钢筋锈蚀率BP神经网络预测模型[J].西部交通科技,2010(5):5-8,15.(Leng Yan-ling,Zhang Jing-quan,Mao Yan.A model based on BP neural network used to predict corrosion in reinforced concret[J].Western China Communications Science & Technology,2010(5):5-8,15.) [7]刘斌云,王鑫,万其微.基于ABC-BP神经网络预测钢筋锈蚀程度[J].合成材料老化与应用,2019,48(5):54-58.(Liu Bin-yun,Wang Xin,Wan Qi-wei.Predict corrosion degree of steel bars in reinforcing concrete based on ABC-BP neural network[J].Synthetic Materials Aging and Application,2019,48(5):54-58.) [8]甘海龙,郭容宽.基于神经网络技术预测锈胀开裂后混凝土中钢筋锈蚀量[J].科技通报,2019,35(2):144-149.(Gan Hai-long,Guo Rong-kuan.Prediction on corrosive degree of reinforcement concrete by neural network[J].Bulletin of Science and Technology,2019,35(2):144-149.) [9]Rawat W,Wang Z H.Deep convolutional neural networks for image classification:a comprehensive review[J].Neural Computation,2017,29(9):2352-2449. [10]王洋,刘积仁,赵大哲,等.卷积神经网络在MRI图像诊断中的应用[J].东北大学学报(自然科学版),2019,40(2):169-173.(Wang Yang,Liu Ji-ren,Zhao Da-zhe,et al.Application of convolutional neural networks in computer-aided diagnosis of MRI images[J].Journal of Northeastern University(Natural Science),2019,40(2):169-173.) [11]Szegedy C,Liu W,Jia Y,et al.Going deeper with convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Boston,2015:1-9. [12]He K,Zhang X,Ren S,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Chongqing,2016:770-778. [13]Cha Y J,Choi W,Suh G,et al.Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types[J].Computer-Aided Civil and Infrastructure Engineering,2018,33:731-747. [14]王达磊,彭博,潘玥,等.基于深度神经网络的锈蚀图像分割与定量分析[J].华南理工大学学报(自然科学版),2018,46(12):121-127,146.(Wang Da-lei,Peng Bo,Pan Yue,et al.Segmentation and quantitative analysis of corrosion images based on deep neural networks[J].Journal of South China University of Technology(Natural Science Edition),2018,46(12):121-127,146.) [15]中华人民共和国国家标准.混凝土结构设计规范:GB50010—2010[S].北京:中国建筑工业出版社,2015.(National Standards of the People′s Republic of China.Code for design of concrete structures:GB50010—2010 [S].Beijing:China Architecture & Building Press,2015.) [16]方亮,周云,易督航.锈蚀 HRB500 钢筋混凝土板抗弯性能试验研究[J].湖南大学学报(自然科学版),2020,47(11):84-94.(Fang Liang,Zhou Yun,Yi Du-hang.Research on flexural behavior of corroded reinforced concrete slabs with HRB500 bars[J].Journal of Hunan University(Natural Sciences),2020,47(11):84-94.) [17]中华人民共和国国家标准.混凝土结构现场检测技术标准:GB/T50784—2013[S].北京:中国建筑工业出版社,2013.(National Standards of the People′s Republic of China.Technical standard of in-site inspection of concrete structure:GB/T50784—2013 [S].Beijing:China Architecture & Building Press,2013.) [18]LeCun Y,Bengio Y,Hinton G.Deep learning[J].Nature,2015,521(7553):436-444. [19]Zhang R.Making convolutional networks shift-invariant again[J].arXiv preprint arXiv:1904.11486,2019. [20]roba L,Grman J,Ravas R.Impact of Gaussian noise and image filtering to detected corner points positions stability[C]//2017 11th International Conference on Measurement.Smolenice:IEEE,2017:123-126. [21]Murphy K P.Machine learning:a probabilistic perspective[M].Cambridge:MIT Press,2012.