[1]Gao F,Hu Y,Li G,et al.Layer-by-layer deposition of bioactive layers on magnesium alloy stent materials to improve corrosion resistance and biocompatibility[J].Bioactive Materials,2020,5(3):611-623. [2]Sotomi Y,Onuma Y,Collet C,et al.Bioresorbable scaffold:the emerging reality and future directions[J].Circulation Research,2017,120(8):1341-1352. [3]Mauri L,Hsieh W H,Massaro J M,et al.Stent thrombosis in randomized clinical trials of drug-eluting stents[J].New England Journal of Medicine,2007,356(10):1020-1029. [4]Joner M,Aloke F V,Farb A,et al.Pathology of drug-eluting stents in humans[J].Journal of the American College of Cardiology,2006,48(1):193-202. [5]Palmerini T,Biondi-Zoccai G,Riva D D,et al.Stent thrombosis with drug-eluting and bare-metal stents:evidence from a comprehensive network meta-analysis[J].The Lancet,2012,379(9824):1393-1402. [6]Sambola A,Rello P,Soriano T,et al.Safety and efficacy of drug eluting stents vs bare metal stents in patients with atrial fibrillation: a systematic review and meta-analysis[J].Thrombosis Research,2020,195:128-135. [7]Arunkumar G,Rameshbabu A M,Parameswaran P,et al.Microstructural,cytotoxicity and antibacterial properties of bio-degradable Zn-2Cu-Ti alloy[J].Materials Today:Proceedings,2021,37:3554-3556. [8]Lin J,Tong X,Wang K,et al.Biodegradable Zn-3Cu and Zn-3Cu-0.2Ti alloys with ultrahigh ductility and antibacterial ability for orthopedic applications[J].Journal of Materials Science & Technology,2021,68:76-90. [9]Bowen P K,Shearier E R,Zhao S,et al.Biodegradable metals for cardiovascular stents:from clinical concerns to recent Zn-alloys[J].Advanced healthcare Materids,2016,5(10):1121-1140. [10]Mostaed E,Sikora-Jasinska M,Drelich J W,et al.Zinc-based alloys for degradable vascular stent applications[J].Acta Biomaterialia,2018,71:1-23. [11]Milazzo G,Caroli S,Braun R D.Tables of standard electrode potentials[J].Journal of the Electrochemical Society,1978,125(6):261-272. [12]Kabir H,Munir K,Wen C,et al.Recent research and progress of biodegradable zinc alloys and composites for biomedical applications:biomechanical and biocorrosion perspectives[J].Bioactive Materials,2021,6(3):836-879. [13]Tang Z,Niu J,Huang H,et al.Potential biodegradable Zn-Cu binary alloys developed for cardiovascular implant applications[J].Journal of the Mechanical Behavior of Biomedical Materials,2017,72:182-191. [14]Zhang W,Li P,Neumann B,et al.Chandler-loop surveyed blood compatibility and dynamic blood triggered degradation behavior of Zn-4Cu alloy and Zn[J].Materials Science and Engineering C,2021,119:111594. [15]Jia B,Yang H,Han Y,et al.In vitro and in vivo studies of Zn-Mn biodegradable metals designed for orthopedic applications[J].Acta Biomaterialia,2020,108:358-372. [16]Chen C,Yue R,Zhang J,et al.Biodegradable Zn-1.5Cu-1.5Ag alloy with anti-aging ability and strain hardening behavior for cardiovascular stents[J].Materials Science and Engineering:C,2020,116:111172. [17]Yue R,Huang H,Ke G,et al.Microstructure,mechanical properties and in vitro degradation behavior of novel Zn-Cu-Fe alloys[J].Materials Characterization,2017,134:114-122. [18]王利卿,孙世能,任玉平,等,Mg、Ca元素对可降解Zn合金组织性能影响[J].东北大学学报(自然科学版),2018,39(1):35-39.(Wang Li-qin,Sun Shi-neng,Ren Yu-ping,et al.Effect of Mg and Ca on microstructure and properties of degradable Zn alloy[J].Journal of Northeatern University(Natural Sciene),2018,39(1):35-39.) [19]崔忠圻,覃耀春.金属学与热处理[M].北京:机械工业出版社,2007.(Cui Zhong-qi,Qin Yao-chun.Metallography and heat treatment[M].Beijing:China Machine Press,2007.) [20]Yue R,Zhang J,Ke G,et al.Effects of extrusion temperature on microstructure,mechanical properties and in vitro degradation behavior of biodegradable Zn-3Cu-0.5Fe alloy[J].Materials Science and Engineering:C,2019,105:110106. [21]Shi Z Z,Gao X X,Zhang H J,et al.Design biodegradable Zn alloys:second phases and their significant influences on alloy properties[J].Bioactive Materials,2020,5(2):210-218. [22]Kubásek J,Vojtěch D,Jablonská E,et al.Structure,mechanical characteristics and in vitro degradation,cytotoxicity,genotoxicity and mutagenicity of novel biodegradable Zn-Mg alloys[J].Materials Science and Engineering:C,2016,58:24-35. [23]Huang S,Wu W,Su Y,et al.Insight into the corrosion behaviour and degradation mechanism of pure zinc in simulated body fluid[J].Corrosion Science,2021,178:109-111. [24]Jain D,Pareek S,Agarwala A,et al.Effect of exposure time on corrosion behavior of zinc-alloy in simulated body fluid solution:electrochemical and surface investigation[J].Journal of Materials Research and Technology,2021,10:738-751. [25]Liu X,Sun J,Qiu K,et al.Effects of alloying elements(Ca and Sr) on microstructure,mechanical property and in vitro corrosion behavior of biodegradable Zn-1.5Mg alloy[J].Journal of Alloys and Compounds,2016,664:444-452.(上接第1077页)(Geng Rong,Wang Hong-yan,Liu Chang,et al.Computational offloading algorithm oriented to the space-earth integration network[J].Journal of Northeastern University(Natural Science),2022,43(3):376-382,413.) [8]Zhao F,Chen Y,Zhang Y,et al.Dynamic offloading and resource scheduling for mobile edge computing with energy harvesting devices[J].IEEE Transactions on Network and Service Management,2021,18(2):2154-2165. [9]Li M,Cheng N,J Gao,et al.Energy-efficient UAV-assisted mobile edge computing:resource allocation and trajectory optimization[J].IEEE Transactions on Vehicular Technology,2020,69(3):3424-3438. [10]Yang B,Cao X,Li X,et al.Mobile-edge-computing-based hierarchical machine learning tasks distribution for IIOT[J].IEEE Internet of Things Journal,2019,7(3):2169-2180. [11]Cheng Z P,Min M H,Liwang M H,et al.Multi-agent DDPG-based joint task partitioning and power control in fog computing networks[J].IEEE Internet of Things Journal,2021,9(1):104-116. [12]Jararweh Y,Doulat A,Darabseh A,et al.SDMEC:software defined system for mobile edge computing[C]// 2016 IEEE International Conference on Cloud Engineering Workshop(IC2EW).Berlin:IEEE,2016:88-93. [13]Chen M,Hao Y.Task offloading for mobile edge computing in software defined ultra-dense network[J].IEEE Journal on Selected Areas in Communications,2018,36(3):587-597. [14]Bi S,Zhang Y.Computation rate maximization for wireless powered mobile-edge computing with binary computation offloading[J].IEEE Transactions on Wireless Communications,2018,17(6):4177-4190. [15]Zhang H,Liu H,Cheng J,et al.Downlink energy efficiency of power allocation and wireless backhaul bandwidth allocation in heterogeneous small cell networks[J].IEEE Transactions on Communications,2018,66(4):1705-1716.