Journal of Northeastern University(Natural Science) ›› 2024, Vol. 45 ›› Issue (3): 314-322.DOI: 10.12068/j.issn.1005-3026.2024.03.002
• Information & Control • Previous Articles Next Articles
Guang-lei XIA1, Zhao-xia WU1(), Meng-yuan LIU1, Yu-shan JIANG2
Received:
2022-11-07
Online:
2024-03-15
Published:
2024-05-17
Contact:
Zhao-xia WU
About author:
WU Zhao-xia,E-mail: ysuwzx@126.comCLC Number:
Guang-lei XIA, Zhao-xia WU, Meng-yuan LIU, Yu-shan JIANG. Prediction of Sinter Chemical Indexes Based on GMM-KNN-LSTM[J]. Journal of Northeastern University(Natural Science), 2024, 45(3): 314-322.
参数 | 序号 | 参数名称 | 单位 |
---|---|---|---|
原料 | 1 2 3 4 5 6 | 石灰粉 除尘矿 燃料 铁粉 烧结返矿 高炉返矿 | t/h t/h t/h t/h t/h t/h |
混合料 | 7 8 9 10 11 | 总铁质量分数 五氧化二钒质量分数 氧化钙质量分数 二氧化硅质量分数 水分质量分数 | % % % % % |
操作 | 12 13 14 15 16 17 | 圆辊转速 九辊转速 烧结机速度 点火温度 煤气流量 风机风量 | r/h r/h m/min °C m3/h m3/h |
状态 | 18 19 20 21 22~35 36~49 | 南烟道温度 南烟道负压 北烟道温度 北烟道负压 风箱废气温度 风箱负压 | °C kPa °C kPa °C kPa |
化学指标 | 50 | 烧结矿总铁质量分数 | % |
51 52 | 烧结矿FeO质量分数 烧结矿碱度 | % — |
Table 1 Main parameters of sinter process
参数 | 序号 | 参数名称 | 单位 |
---|---|---|---|
原料 | 1 2 3 4 5 6 | 石灰粉 除尘矿 燃料 铁粉 烧结返矿 高炉返矿 | t/h t/h t/h t/h t/h t/h |
混合料 | 7 8 9 10 11 | 总铁质量分数 五氧化二钒质量分数 氧化钙质量分数 二氧化硅质量分数 水分质量分数 | % % % % % |
操作 | 12 13 14 15 16 17 | 圆辊转速 九辊转速 烧结机速度 点火温度 煤气流量 风机风量 | r/h r/h m/min °C m3/h m3/h |
状态 | 18 19 20 21 22~35 36~49 | 南烟道温度 南烟道负压 北烟道温度 北烟道负压 风箱废气温度 风箱负压 | °C kPa °C kPa °C kPa |
化学指标 | 50 | 烧结矿总铁质量分数 | % |
51 52 | 烧结矿FeO质量分数 烧结矿碱度 | % — |
过程参数 | MIC值 | MIC 均值 | 过程参数 | MIC值 | MIC 均值 | ||||
---|---|---|---|---|---|---|---|---|---|
总铁质 量分数 | FeO质 量分数 | 碱度 | 总铁质 量分数 | FeO质 量分数 | 碱度 | ||||
风机风量 | 0.797 9 | 0.628 7 | 0.606 2 | 0.677 6 | 7号风箱废弃温度 | 0.681 9 | 0.512 8 | 0.490 7 | 0.561 8 |
7号风箱负压 | 0.602 5 | 0.494 3 | 0.458 3 | 0.518 4 | 铁粉 | 0.589 0 | 0.479 2 | 0.476 1 | 0.514 8 |
石灰粉 | 0.583 4 | 0.456 2 | 0.467 1 | 0.502 2 | 除尘矿 | 0.564 2 | 0.415 6 | 0.457 3 | 0.479 1 |
3号风箱废气温度 | 0.540 8 | 0.431 6 | 0.445 7 | 0.472 7 | 9号风箱负压 | 0.519 5 | 0.422 2 | 0.420 0 | 0.453 9 |
燃料 | 0.529 1 | 0.404 9 | 0.404 7 | 0.446 2 | 烧结返矿 | 0.464 4 | 0.402 4 | 0.375 2 | 0.414 0 |
22号风箱负压 | 0.482 8 | 0.356 3 | 0.376 4 | 0.405 2 | 11号风箱负压 | 0.466 8 | 0.354 4 | 0.388 6 | 0.403 3 |
3号风箱负压 | 0.479 9 | 0.343 6 | 0.372 9 | 0.398 8 | 15号风箱负压 | 0.476 6 | 0.348 5 | 0.370 0 | 0.398 4 |
13号风箱负压 | 0.473 7 | 0.344 8 | 0.366 7 | 0.395 1 | 21号风箱负压 | 0.476 6 | 0.336 6 | 0.368 6 | 0.393 9 |
5号风箱负压 | 0.466 7 | 0.351 2 | 0.359 8 | 0.392 6 | 20号风箱负压 | 0.470 5 | 0.339 1 | 0.367 5 | 0.392 4 |
16号风箱负压 | 0.467 8 | 0.342 0 | 0.363 7 | 0.391 2 | 18号风箱负压 | 0.468 9 | 0.337 2 | 0.364 4 | 0.390 2 |
南烟道负压 | 0.460 1 | 0.334 6 | 0.353 0 | 0.382 6 | 1号风箱负压 | 0.447 8 | 0.352 6 | 0.344 7 | 0.381 7 |
2号风箱负压 | 0.446 7 | 0.307 1 | 0.325 0 | 0.359 6 | 混合料水分 | 0.413 7 | 0.308 6 | 0.318 6 | 0.347 0 |
5号风箱废气温度 | 0.347 3 | 0.288 5 | 0.285 4 | 0.307 1 | 21号风箱废气温度 | 0.341 1 | 0.289 2 | 0.261 2 | 0.297 2 |
1号风箱废气温度 | 0.333 1 | 0.273 2 | 0.280 4 | 0.295 6 | 高炉返矿 | 0.288 8 | 0.295 6 | 0.282 3 | 0.288 9 |
20号风箱废气温度 | 0.310 4 | 0.271 8 | 0.268 7 | 0.283 6 | 22号风箱废气温度 | 0.307 1 | 0.262 7 | 0.265 2 | 0.278 4 |
北烟道温度 | 0.338 1 | 0.243 1 | 0.252 0 | 0.277 7 | 烧结机速度 | 0.333 0 | 0.250 4 | 0.248 8 | 0.277 4 |
Table 2 MIC values and their mean values of three chemical indexes in sintering process
过程参数 | MIC值 | MIC 均值 | 过程参数 | MIC值 | MIC 均值 | ||||
---|---|---|---|---|---|---|---|---|---|
总铁质 量分数 | FeO质 量分数 | 碱度 | 总铁质 量分数 | FeO质 量分数 | 碱度 | ||||
风机风量 | 0.797 9 | 0.628 7 | 0.606 2 | 0.677 6 | 7号风箱废弃温度 | 0.681 9 | 0.512 8 | 0.490 7 | 0.561 8 |
7号风箱负压 | 0.602 5 | 0.494 3 | 0.458 3 | 0.518 4 | 铁粉 | 0.589 0 | 0.479 2 | 0.476 1 | 0.514 8 |
石灰粉 | 0.583 4 | 0.456 2 | 0.467 1 | 0.502 2 | 除尘矿 | 0.564 2 | 0.415 6 | 0.457 3 | 0.479 1 |
3号风箱废气温度 | 0.540 8 | 0.431 6 | 0.445 7 | 0.472 7 | 9号风箱负压 | 0.519 5 | 0.422 2 | 0.420 0 | 0.453 9 |
燃料 | 0.529 1 | 0.404 9 | 0.404 7 | 0.446 2 | 烧结返矿 | 0.464 4 | 0.402 4 | 0.375 2 | 0.414 0 |
22号风箱负压 | 0.482 8 | 0.356 3 | 0.376 4 | 0.405 2 | 11号风箱负压 | 0.466 8 | 0.354 4 | 0.388 6 | 0.403 3 |
3号风箱负压 | 0.479 9 | 0.343 6 | 0.372 9 | 0.398 8 | 15号风箱负压 | 0.476 6 | 0.348 5 | 0.370 0 | 0.398 4 |
13号风箱负压 | 0.473 7 | 0.344 8 | 0.366 7 | 0.395 1 | 21号风箱负压 | 0.476 6 | 0.336 6 | 0.368 6 | 0.393 9 |
5号风箱负压 | 0.466 7 | 0.351 2 | 0.359 8 | 0.392 6 | 20号风箱负压 | 0.470 5 | 0.339 1 | 0.367 5 | 0.392 4 |
16号风箱负压 | 0.467 8 | 0.342 0 | 0.363 7 | 0.391 2 | 18号风箱负压 | 0.468 9 | 0.337 2 | 0.364 4 | 0.390 2 |
南烟道负压 | 0.460 1 | 0.334 6 | 0.353 0 | 0.382 6 | 1号风箱负压 | 0.447 8 | 0.352 6 | 0.344 7 | 0.381 7 |
2号风箱负压 | 0.446 7 | 0.307 1 | 0.325 0 | 0.359 6 | 混合料水分 | 0.413 7 | 0.308 6 | 0.318 6 | 0.347 0 |
5号风箱废气温度 | 0.347 3 | 0.288 5 | 0.285 4 | 0.307 1 | 21号风箱废气温度 | 0.341 1 | 0.289 2 | 0.261 2 | 0.297 2 |
1号风箱废气温度 | 0.333 1 | 0.273 2 | 0.280 4 | 0.295 6 | 高炉返矿 | 0.288 8 | 0.295 6 | 0.282 3 | 0.288 9 |
20号风箱废气温度 | 0.310 4 | 0.271 8 | 0.268 7 | 0.283 6 | 22号风箱废气温度 | 0.307 1 | 0.262 7 | 0.265 2 | 0.278 4 |
北烟道温度 | 0.338 1 | 0.243 1 | 0.252 0 | 0.277 7 | 烧结机速度 | 0.333 0 | 0.250 4 | 0.248 8 | 0.277 4 |
模型 | MSE | MAE | RMSE |
---|---|---|---|
BPNN | 0.083 | 0.215 3 | 0.287 7 |
RNN | 0.063 | 0.186 7 | 0.250 6 |
LSTM | 0.056 | 0.169 1 | 0.237 4 |
GMM-KNN-LSTM | 0.017 5 | 0.089 1 | 0.132 2 |
Table 3 Comparison of prediction performance of
模型 | MSE | MAE | RMSE |
---|---|---|---|
BPNN | 0.083 | 0.215 3 | 0.287 7 |
RNN | 0.063 | 0.186 7 | 0.250 6 |
LSTM | 0.056 | 0.169 1 | 0.237 4 |
GMM-KNN-LSTM | 0.017 5 | 0.089 1 | 0.132 2 |
模型 | MSE | MAE | RMSE |
---|---|---|---|
BPNN | 0.212 5 | 0.346 3 | 0.461 0 |
RNN | 0.161 7 | 0.300 0 | 0.402 1 |
LSTM | 0.148 9 | 0.275 5 | 0.385 8 |
GMM-KNN-LSTM | 0.034 7 | 0.128 3 | 0.186 4 |
Table 4 Comparison of prediction performance of
模型 | MSE | MAE | RMSE |
---|---|---|---|
BPNN | 0.212 5 | 0.346 3 | 0.461 0 |
RNN | 0.161 7 | 0.300 0 | 0.402 1 |
LSTM | 0.148 9 | 0.275 5 | 0.385 8 |
GMM-KNN-LSTM | 0.034 7 | 0.128 3 | 0.186 4 |
模型 | MSE | MAE | RMSE |
---|---|---|---|
BPNN | 0.001 1 | 0.024 6 | 0.032 5 |
RNN | 0.000 8 | 0.021 4 | 0.028 7 |
LSTM | 0.000 7 | 0.019 7 | 0.027 7 |
GMM-KNN-LSTM | 0.000 1 | 0.009 0 | 0.013 6 |
Table 5 Comparison of prediction performance of alkalinity with different models
模型 | MSE | MAE | RMSE |
---|---|---|---|
BPNN | 0.001 1 | 0.024 6 | 0.032 5 |
RNN | 0.000 8 | 0.021 4 | 0.028 7 |
LSTM | 0.000 7 | 0.019 7 | 0.027 7 |
GMM-KNN-LSTM | 0.000 1 | 0.009 0 | 0.013 6 |
1 | Liu S, Lyu Q, Liu X J,et al.Synthetically predicting the quality index of sinter using machine learning model[J].Ironmaking & Steelmaking,2020,47(7):828-836. |
2 | Li H Y, Li X, Liu X J,et al.Prediction of blast furnace parameters using feature engineering and Stacking algorithm[J].Ironmaking & Steelmaking,2022,49(3):283-296. |
3 | 李壮年,储满生,柳政根,等.基于机器学习和遗传算法的高炉参数预测与优化[J].东北大学学报(自然科学版),2020,41(9):1262-1267. |
Li Zhuang‐nian, Chu Man‐sheng, Liu Zheng‐gen,et al.Prediction and optimization of blast furnace parameters based on machine learning and genetic algorithm[J].Journal of Northeastern University (Natural Science),2020,41(9):1262-1267. | |
4 | Du S, Wu M, Chen L F,et al.Operating mode recognition based on fluctuation interval prediction for iron ore sintering process[J].IEEE/ASME Transactions on Mechatronics,2020,25(5):2297-2308. |
5 | Du S, Wu M, Chen X,et al. An intelligent control strategy for iron ore sintering ignition process based on the prediction of ignition temperature[J].IEEE Transactions on Industrial Electronics,2020,67(2):1233-1241. |
6 | Jiang Y S, Yang N, Yao Q Q,et al.Real‐time moisture control in sintering process using offline‐online NARX neural networks[J].Neurocomputing,2020,396:209-215. |
7 | Huang Q Y, Liu Z H, Liu Z C,et al. The strength prediction model of iron ore sinter based on an artificial neural network[J].Ironmaking & Steelmaking,2023,50(2):159-166. |
8 | Liu S, Lyu Q, Liu X J,et al. A prediction system of burn through point based on gradient boosting decision tree and decision rules[J].ISIJ International,2019,59(12):2156-2164. |
9 | Li Z P, Fan X H, Chen G,et al. Optimization of iron ore sintering process based on ELM model and multi‐criteria evaluation[J].Neural Computing and Applications,2017,28(8):2247-2253. |
10 | 吕庆,刘月明,张振峰,等.基于承钢生产数据预测烧结矿FeO含量[J].钢铁研究学报,2018,30(12):957-962. |
Qing Lyu, Liu Yue‐ming, Zhang Zhen‐feng,et al. Prediction of FeO content in sinter based on production data of Chengde Steel Mill[J].Journal of Iron and Steel Research,2018,30(12):957-962. | |
11 | 刘俊杰,张东升,邵慧君,等.基于BP神经网络的烧结过程预报模型[J].冶金动力,2019,38(1):1-3,9. |
Liu Jun‐jie, Zhang Dong‐sheng, Shao Hui‐jun,et al.Prediction model of sintering process based on BP neural network[J].Metallurgical Power,2019,38(1):1-3,9. | |
12 | Liu S, Liu X J, Lyu Q,et al. Comprehensive system based on a DNN and LSTM for predicting sinter composition[J].Applied Soft Computing,2020,95:106574. |
13 | Li D C, Huang W T, Chen C C,et al. Employing box plots to build high‐dimensional manufacturing models for new products in TFT‐LCD plants[J].Neurocomputing,2014,142:73-85. |
14 | Zhou Z, Wen C L, Yang C J.Fault isolation based on k-nearest neighbor rule for industrial processes[J].IEEE Transactions on Industrial Electronics,2016,63(4):2578-2586. |
15 | 廖志伟,陈琳韬,黄杰栋,等.基于特征空间变换与LSTM的中短期电煤价格预测[J].东北大学学报(自然科学版),2021,42(4):483-493. |
Liao Zhi‐wei, Chen Lin‐tao, Huang Jie‐dong,et al. Medium and short‐term electricity coal price forecast based on feature space transformation and LSTM[J].Journal of Northeastern University (Natural Science),2021,42(4):483-493. |
[1] | Meng CHEN, Yu HONG. Test Study on Drying Shrinkage Properties of Engineered Cementitious Composites with RTP‐PVA Hybrid Fibre [J]. Journal of Northeastern University(Natural Science), 2024, 45(3): 407-414. |
[2] | LIU Ke-qi, DU Dian-chun, ZHAO Wen, DING Wan-tao. Machine Learning-Based Prediction and Optimization of Slurry Shield’s Key Tunneling Parameters [J]. Journal of Northeastern University(Natural Science), 2023, 44(11): 1621-1630. |
[3] | JIAO Zhi-jie, WANG Zhi-qiang, LUO Jun-yi, XU Zhi-peng. Study on Plate Angular Rolling Process Using Pattern Prediction Model [J]. Journal of Northeastern University(Natural Science), 2022, 43(6): 815-820. |
[4] | CHEN Bing, HAN Jin-yang, TANG Xiao-lei, XIA Bo-ran. Prediction Model for Elongation of Tension Leveling Based on Machine Learning Algorithm and Numerical Analysis [J]. Journal of Northeastern University(Natural Science), 2022, 43(2): 236-242. |
[5] | GONG Qi, CHEN Bing-zhi, LI Yong-hua, XIA Qing. Fault Analysis of Metro Power Supply Module and Prediction Method [J]. Journal of Northeastern University(Natural Science), 2022, 43(1): 8-16. |
[6] | GUO Yong-chun, ZHENG Hai-yan, HU Xin-guang, SHENG Feng-man. Prediction Model of Al2O3 Activity in CaO-SiO2-Al2O3-MgO Quaternary Slag System [J]. Journal of Northeastern University(Natural Science), 2021, 42(5): 652-657. |
[7] | DONG Li-yan, WANG Yue-qun, LI Yong-li, ZHU Qi. Adaptive Random Sampling Algorithm Based on the Balance Maximization [J]. Journal of Northeastern University Natural Science, 2018, 39(6): 792-796. |
[8] | ZHU Zi-zong, XIE Yang-yang, WU Qiang, SHI Guo-jing. Coke-Making with Modified Xinjiang Kubai Coals and Prediction the Cold Strength of Coke [J]. Journal of Northeastern University Natural Science, 2017, 38(12): 1726-1730. |
[9] | LI Xiao-peng, WANG Xue, YUN Hai-meng, AN Lian-chui. Static Friction Coefficient Fractal Model of Joint Surfaces with Elastic-Plastic Beformation Considered [J]. Journal of Northeastern University Natural Science, 2016, 37(5): 673-677. |
[10] | WU Si-wei, CAO Guang-ming, ZHOU Xiao-guang, LIU Zhen-yu. Data Preprocessing and Neural Network Model of C-Mn Steel Based on Big Data [J]. Journal of Northeastern University Natural Science, 2016, 37(12): 1710-1715. |
[11] | LIU Qing, YUAN Wei, WANG Bao, PENG Liang-zhen. Concentrate Grade Prediction of Gold Ore Based on GA-BP Neural Network [J]. Journal of Northeastern University Natural Science, 2015, 36(2): 237-240. |
[12] | LYU Wu, MAO Zhizhong, YUAN Ping, JIA Mingxing. Ladle Furnace End Point Sulphur Content Prediction Model Based on Model Migration Method〓 [J]. Journal of Northeastern University Natural Science, 2014, 35(3): 314-317. |
[13] | JI Wen, WANG Jianhui, FANG Xiaoke, GU Shusheng. A New Construction Method of Membership Function for Interval Type2 Fuzzy Sets [J]. Journal of Northeastern University, 2013, 34(5): 618-623. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||