Journal of Northeastern University(Natural Science) ›› 2024, Vol. 45 ›› Issue (4): 514-522.DOI: 10.12068/j.issn.1005-3026.2024.04.008
• Materials & Metallurgy • Previous Articles
Ren WEI1, Zhi-jian SU1, Yi-da DU1, Yan-bin WANG2
Received:
2022-11-30
Online:
2024-04-15
Published:
2024-06-26
CLC Number:
Ren WEI, Zhi-jian SU, Yi-da DU, Yan-bin WANG. Numerical Simulation of Molten Steel Flow, Heat Transfer and Solidification in Slab Mold Under Composite Magnetic Field[J]. Journal of Northeastern University(Natural Science), 2024, 45(4): 514-522.
参数 | 数值 |
---|---|
钢液电导率/(S·m-1) | 7.14×105 |
线圈电导率/(S·m-1) | 6.25×107 |
拉坯速度/(m·min-1) | 1.6 |
钢液密度/(kg·m-3) | 7 020 |
钢液黏度系数/(kg·(m?s)-1) | 0.006 2 |
电磁搅拌电流/A | 400 |
电磁制动电流/A | 400 |
电磁搅拌频率/Hz | 2 |
钢液凝固潜热/(J·kg-1) | 272 000 |
钢液比热容/(J·(kg?K)-1) | 720 |
钢液导热系数/(W·(m·K)-1) | 温度函数 |
钢液固相线温度/K | 1 728 |
钢液液相线温度/K | 1 788 |
Table 1 Main calculation parameters
参数 | 数值 |
---|---|
钢液电导率/(S·m-1) | 7.14×105 |
线圈电导率/(S·m-1) | 6.25×107 |
拉坯速度/(m·min-1) | 1.6 |
钢液密度/(kg·m-3) | 7 020 |
钢液黏度系数/(kg·(m?s)-1) | 0.006 2 |
电磁搅拌电流/A | 400 |
电磁制动电流/A | 400 |
电磁搅拌频率/Hz | 2 |
钢液凝固潜热/(J·kg-1) | 272 000 |
钢液比热容/(J·(kg?K)-1) | 720 |
钢液导热系数/(W·(m·K)-1) | 温度函数 |
钢液固相线温度/K | 1 728 |
钢液液相线温度/K | 1 788 |
1 | Zappulla M L S, Cho S M, Koric S,et al.Multiphysics modeling of continuous casting of stainless steel[J].Journal of Materials Processing Technology,2020,278:116469. |
2 | Thomas B G.Continuous casting[M].Amsterdam:Elsevier,2001:1595-1598. |
3 | 任忠鸣,雷作胜,李传军,等.电磁冶金技术研究新进展[J].金属学报,2020,56(4):583-600. |
Ren Zhong‐ming, Lei Zuo‐sheng, Li Chuan‐jun,et al. New study and development on electromagnetic field technology in metallurgical processes[J].Acta Metallurgica Sinica,2020,56(4):583-600. | |
4 | Tretiak O, Wang Q, Li D W,et al.Influence of joint EMSFN and M‐EMS on fluid flow in the mold during continuous casting[J].Acta Metallurgica Sinica(English Letters),2018,31(12):1345-1355. |
5 | Louhenkilpi S.Continuous casting of steel[M].Amsterdam:Elsevier,2014:373-434. |
6 | 陈进,苏志坚,中岛敬治,等.移动电磁场下低碳钢凝固过程枝晶破碎临界条件[J].东北大学学报(自然科学版),2010,31(12):1717-1720. |
Chen Jin, Su Zhi‑jian, Keiji Nakajima,et al.Critical conditions for dendrite fragmentation of low carbon steel in travelling electromagnetic field[J].Journal of Northeastern University (Natural Science),2010,31(12):1717-1720. | |
7 | Cho S M, Thomas B G.Electromagnetic forces in continuous casting of steel slabs[J].Metals,2019,9(4):471-509. |
8 | Shakhov S I, Yachikov I M, Feoktistov N A,et al. Use of an electromagnetic brake in a continuous casting mold when a DC magnetic field is applied to a liquid metal[J].Russian Metallurgy (Metally),2021(12):1534-1537. |
9 | Kim D S, Kim W S, Cho K H.Numerical simulation of the coupled turbulent flow and macroscopic solidification in continuous casting with electromagnetic brake[J].ISIJ International,2000,40(7):670-676. |
10 | 钟云涛,潘汉玉, Jacobson Nils,等.板坯结晶器流场控制的发展趋势[J].宝钢技术,2016(4):53-57. |
Zhong Yun‑tao, Pan Han‑yu, Jacobson Nils,et al.Development trends of mold flow control in slab casting[J].Baosteel Technology,2016(4):53-57. | |
11 | 冯维庆.复合磁场作用下板坯结晶器内钢液流动的数值模拟[D].沈阳:东北大学,2016. |
Feng Wei‐qing. Numerical simulation of flow field in slab mold under combined magnetic fields[D].Shenyang:Northeastern University,2016. | |
12 | 杨宇威,苏志坚,陈进,等.复合磁场作用下板坯结晶器内流场与温度场的数值模拟[J].材料与冶金学报,2021,20(3):185-191. |
Yang Yu‑wei, Su Zhi‑jian, Chen Jin,et al.Numerical simulation of fluid flow and temperature field of slab under composite magnetic field[J].Journal of Materials and Metallurgy,2021,20(3):185-191. | |
13 | Han S W, Cho H J, Jin S Y,et al.Effects of simultaneous static and traveling magnetic fields on the molten steel flow in a continuous casting mold[J].Metallurgical and Materials Transactions B,2018,49:2757-2769. |
14 | Sun X H, Li B, Lu H B,et al.Steel/slag interface behavior under multifunction electromagnetic driving in a continuous casting slab mold[J].Metals,2019,9(9):983-1000. |
15 | Liu H P, Yang C Z, Zhang H,et al.Numerical simulation of fluid flow and thermal characteristics of thin slab in the funnel‐type molds of two casters[J].ISIJ International,2011,51(3):392-401. |
16 | Yang Y, Jönsson P G, Ersson M,et al.Inclusion behavior under a swirl flow in a submerged entry nozzle and mold[J].Steel Research International,2015,86(4):341-360. |
17 | Zheng X S, Sha M H, Jin J Z.Experimental research and numerical simulation of mold temperature field in continuous casting of steel[J].Acta Metallurgica Sinica(English Letters),2006,19(3):176-182. |
18 | Wang Q Q, Zhang L F.Influence of FC‐mold on the full solidification of continuous casting slab[J].JOM,2016,68(8):2170-2179. |
19 | Liu Z Q, Li B K.Transient motion of inclusion cluster in vertical‐bending continuous casting caster considering heat transfer and solidification[J].Powder Technology,2016,287:315-329. |
20 | Morales R D, López A G, Olivares I M.Heat transfer analysis during water spray cooling of steel rods[J].ISIJ International,1990,30(1):48-57. |
21 | Li X L, Li B K, Liu Z Q,et al. In‐situ analysis and numerical study of inclusion distribution in a vertical‐bending caster[J].ISIJ International,2018,58(11):2052-2061. |
22 | Hibbeler L C, Thomas B G.Mold slag entrainment mechanisms in continuous casting molds[J].Iron and Steel Technology,2013,10(10):121-136. |
23 | 王恩刚,杨泽宽,陈海耿,等.结晶器内连铸坯凝固过程的有限元数值模拟[J].东北大学学报(自然科学版),1996,17(4):384-387. |
Wang En‐gang, Yang Ze‐kuan, Chen Hai‐geng,et al. Finite element numerical modeling on the solidification of continuous casting billet in mold[J].Journal of Northeastern University(Natural Science),1996,17(4):384-387. | |
24 | Cho S M, Thomas B G.Electromagnetic effects on solidification defect formation in continuous steel casting[J].JOM,2020,72(10):3610-3627. |
[1] | Yu-meng WANG, Kai GUAN, Wan-cheng ZHU, Hong-lei LIU. Mining-Induced Surrounding Rock Instability and Surface Subsidence Based on Combination of In-situ Monitoring and Numerical Modelling [J]. Journal of Northeastern University(Natural Science), 2024, 45(2): 234-243. |
[2] | Gang LI, Lei ZHOU, Xiao-yu ZHANG, Kai ZHANG. Determination Method of Pressure Relief Area for Dust Explosion of Connected Equipment [J]. Journal of Northeastern University(Natural Science), 2024, 45(2): 276-281. |
[3] | WUSIMAN Kuerbanjiang, DAI Xiao-ye, SHI Lin. Effects of Phase Change Materials on the Heat Transfer Rate of Thermal Energy Storage System [J]. Journal of Northeastern University(Natural Science), 2023, 44(9): 1292-1298. |
[4] | HOU Jun-xu, YANG Tian-hong, MA Kai, ZHAO Yong. More Than 100 Million DOF Numerical Simulation Technique and Its Engineering Application [J]. Journal of Northeastern University(Natural Science), 2023, 44(9): 1298-1308. |
[5] | MENG Qing-you, YUAN Zhi-tao, YANG Jian-chao. Flocs Formation Mechanism in Hydrophobic Flocculation Flotation of Fine Wolframite [J]. Journal of Northeastern University(Natural Science), 2023, 44(7): 1002-1008. |
[6] | DUAN Shao-pei, LI Bao-kuan, MU Yong-hong, RONG Wen-jie. Numerical Simulation of Gas-Solid Heat Transfer and Moisture Evaporation in Preheating Shaft Kiln [J]. Journal of Northeastern University(Natural Science), 2023, 44(5): 626-634. |
[7] | ZHU Qing-feng, YAN Bo, FENG Zhi-xin, ZUO Yu-bo. Numerical Simulation and Experimental Investigation on Hot Rolling Process of 2195 Aluminum Alloy at Different Speeds [J]. Journal of Northeastern University(Natural Science), 2023, 44(4): 502-509. |
[8] | ZHAO Wen , SUN Yuan, BAI Qian, XIA Yun-peng. Excavation Field Test and Parameters Optimization of the Transverse Pilot Tunnel with Small Diameter Tube Curtain Construction Method [J]. Journal of Northeastern University(Natural Science), 2023, 44(3): 432-439. |
[9] | JIAO Shi-yan, LIAO Xiang-wei, MIN Yi, LIU Cheng-jun. Numerical Simulation of Ultrasonic Cavitation Behavior in 25%K2O-30%Na2O-45%SiO2 Slag [J]. Journal of Northeastern University(Natural Science), 2023, 44(11): 1584-1590. |
[10] | ZHAO Wen, WANG Zhi-guo, WANG Zhao-peng, WANG Xin. Numerical Simulation of Soil Deformation During Jacking of Circular Steel Pipes with Flange Plates [J]. Journal of Northeastern University(Natural Science), 2023, 44(10): 1490-1498. |
[11] | LIU Xiao-hong, WEN Zhi, XIAO Yong-li, LOU Guo-feng. Analysis of Slag Granulation Mechanism and Crushing Efficiency Under Gas Quenching [J]. Journal of Northeastern University(Natural Science), 2023, 44(10): 1424-1430. |
[12] | WU Fei, LI Yi-neng, WANG Meng-hui. Research on Light-Curing Assisted Molding Process of Extrusion-based Ceramic 3D Printing [J]. Journal of Northeastern University(Natural Science), 2022, 43(9): 1283-1290. |
[13] | YUAN Yang, XU Tao, ZHOU Guang-lei, LE Zhi-hua. Simulation Method of Damage and Fracture for Brittle Rock Based on Microplane Model and Regularization [J]. Journal of Northeastern University(Natural Science), 2022, 43(8): 1141-1148. |
[14] | LI Xue-jiao, YANG Hong-ying, ZHAO He-fei, HU Hong-sheng. Numerical Simulation Study on Gas Gathering Structure of Aluminum Reduction Cell [J]. Journal of Northeastern University(Natural Science), 2022, 43(7): 966-972. |
[15] | LYU Chao, SUN Ming-he, YIN Hong-xin, LIU Fang. Simulation Study on the Effect of Venturi Pyrolysis Reactor Structure on Flow Field [J]. Journal of Northeastern University(Natural Science), 2022, 43(6): 821-826. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||