Journal of Northeastern University(Natural Science) ›› 2024, Vol. 45 ›› Issue (6): 816-822.DOI: 10.12068/j.issn.1005-3026.2024.06.008
• Materials & Metallurgy • Previous Articles
Jia-hao ZHAO1, Yang QU1, Hong-jie LUO1,2(), Shi-jie YANG1
Received:
2023-02-24
Online:
2024-06-15
Published:
2024-09-18
Contact:
Hong-jie LUO
About author:
LUO Hong-jie, E-mail: luohjedu@sina.comCLC Number:
Jia-hao ZHAO, Yang QU, Hong-jie LUO, Shi-jie YANG. Effect of Sintering Process on Microstructure and Mechanical Property of Porous Ti[J]. Journal of Northeastern University(Natural Science), 2024, 45(6): 816-822.
原料 | 质量分数/% | 平均粒度/μm | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ti | Mg | Fe | Mn | Cl | Zn | O | C | N | H | Si | ||
钛粉 | 99.8 | 0.01 | 0.06 | 0.01 | 0.03 | — | 0.32 | 0.03 | 0.02 | 0.02 | 0.02 | 50 |
镁粉 | — | 99.9 | 0.01 | 0.008 | 0.003 | 0.008 | — | — | — | — | — | 35 |
镁颗粒 | — | 99.9 | 0.01 | 0.008 | 0.003 | 0.008 | — | — | — | — | — | 1 500 |
Table 1 Chemical composition of Ti powder, Mg powder and Mg particles
原料 | 质量分数/% | 平均粒度/μm | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ti | Mg | Fe | Mn | Cl | Zn | O | C | N | H | Si | ||
钛粉 | 99.8 | 0.01 | 0.06 | 0.01 | 0.03 | — | 0.32 | 0.03 | 0.02 | 0.02 | 0.02 | 50 |
镁粉 | — | 99.9 | 0.01 | 0.008 | 0.003 | 0.008 | — | — | — | — | — | 35 |
镁颗粒 | — | 99.9 | 0.01 | 0.008 | 0.003 | 0.008 | — | — | — | — | — | 1 500 |
烧结温度 | 烧结时间 | 屈服强度 | 弹性模量 | 能量吸收 | 能量吸收效率 | 弯曲强度 | 弯曲模量 |
---|---|---|---|---|---|---|---|
℃ | min | MPa | GPa | MJ·m-3 | MPa | GPa | |
1 000 | 120 | 75.50 | 0.88 | 27.29 | 0.68 | 113.40 | 4.94 |
1 050 | 87.41 | 1.08 | 38.32 | 0.66 | 122.40 | 6.73 | |
1 100 | 89.47 | 1.13 | 42.94 | 0.64 | 159.30 | 8.29 | |
1 150 | 131.11 | 1.26 | 48.37 | 0.62 | 182.40 | 8.76 | |
1 200 | 142.73 | 1.50 | 59.01 | 0.58 | 209.40 | 9.15 |
Table 2 Mechanical properties of porous Ti at different sintering temperatures
烧结温度 | 烧结时间 | 屈服强度 | 弹性模量 | 能量吸收 | 能量吸收效率 | 弯曲强度 | 弯曲模量 |
---|---|---|---|---|---|---|---|
℃ | min | MPa | GPa | MJ·m-3 | MPa | GPa | |
1 000 | 120 | 75.50 | 0.88 | 27.29 | 0.68 | 113.40 | 4.94 |
1 050 | 87.41 | 1.08 | 38.32 | 0.66 | 122.40 | 6.73 | |
1 100 | 89.47 | 1.13 | 42.94 | 0.64 | 159.30 | 8.29 | |
1 150 | 131.11 | 1.26 | 48.37 | 0.62 | 182.40 | 8.76 | |
1 200 | 142.73 | 1.50 | 59.01 | 0.58 | 209.40 | 9.15 |
烧结温度 | 烧结时间 | 屈服强度 | 弹性模量 | 能量吸收 | 能量吸收效率 | 弯曲强度 | 弯曲模量 |
---|---|---|---|---|---|---|---|
℃ | min | MPa | GPa | MJ·m-3 | MPa | GPa | |
1 150 | 60 | 87.29 | 1.14 | 41.55 | 0.64 | 152.70 | 5.39 |
90 | 98.90 | 1.21 | 44.50 | 0.63 | 157.50 | 3.69 | |
120 | 131.11 | 1.26 | 48.37 | 0.62 | 182.40 | 8.76 | |
150 | 134.97 | 1.28 | 48.49 | 0.61 | 267.00 | 7.19 | |
180 | 158.60 | 1.33 | 59.12 | 0.59 | 230.40 | 10.16 |
Table 3 Mechanical properties of porous Ti at different sintering time
烧结温度 | 烧结时间 | 屈服强度 | 弹性模量 | 能量吸收 | 能量吸收效率 | 弯曲强度 | 弯曲模量 |
---|---|---|---|---|---|---|---|
℃ | min | MPa | GPa | MJ·m-3 | MPa | GPa | |
1 150 | 60 | 87.29 | 1.14 | 41.55 | 0.64 | 152.70 | 5.39 |
90 | 98.90 | 1.21 | 44.50 | 0.63 | 157.50 | 3.69 | |
120 | 131.11 | 1.26 | 48.37 | 0.62 | 182.40 | 8.76 | |
150 | 134.97 | 1.28 | 48.49 | 0.61 | 267.00 | 7.19 | |
180 | 158.60 | 1.33 | 59.12 | 0.59 | 230.40 | 10.16 |
1 | Esen Z, Bor S.Processing of titanium foams using magnesium spacer particles[J].Scripta Materialia,2007,56(5):341-344. |
2 | Innocentini M D M, Faleiros R K, Jr Pisani R,et al.Permeability of porous gelcast scaffolds for bone tissue engineering[J].Journal of Porous Materials,2010,17(5):615-627. |
3 | Asaoka K, Kuwayama N, Okuno O,et al.Mechanical properties and biomechanical compatibility of porous titanium for dental implants[J].Journal of Biomedical Materials Research,1985,19(6):699-713. |
4 | Zhang Y P, Li D S, Zhang X P.Gradient porosity and large pore size NiTi shape memory alloys[J].Scripta Materialia,2007,57(11):1020-1023. |
5 | Bobbert F S L, Lietaert K, Eftekhari A A,et al.Additively manufactured metallic porous biomaterials based on minimal surfaces:a unique combination of topological,mechanical,and mass transport properties[J].Acta Biomaterialia,2017,53:572-584. |
6 | 汤慧萍,王建.多孔钛的研究进展[J].中国材料进展,2014,33(sup1):576-585,594. |
Tang Hui‑ping, Wang Jian.Progress in research and development of porous titanium materials[J].Materials China,2014,33(sup1):576-585,594. | |
7 | Rausch G, Hartwig T, Weber M,et al.Herstellung und eigenschaften von titanschäumen[J].Materialwissenschaft und Werkstofftechnik,2000,31(6):412-414. |
8 | Mondal D P, Patel M, Jain H,et al.The effect of the particle shape and strain rate on microstructure and compressive deformation response of pure Ti‑foam made using acrowax as space holder[J].Materials Science and Engineering A,2015,625:331-342. |
9 | Ye B, Dunand D C.Titanium foams produced by solid‑state replication of NaCl powders[J].Materials Science and Engineering A,2010,528(2):691-697. |
10 | Rao X, Chu C L, Zheng Y Y.Phase composition,microstructure,and mechanical properties of porous Ti‑Nb‑Zr alloys prepared by a two‑step foaming powder metallurgy method[J].Journal of the Mechanical Behavior of Biomedical Materials,2014,34:27-36. |
11 | Liao B, Xu C, Li W,et al.Bionic mechanical design and SLM manufacture of porous Ti6Al4V scaffolds for load‑bearing cancellous bone implants[J].Acta of Bioengineering and Biomechanics,2021,23(3):97-107. |
12 | Tange M, Manonukul A, Srikudvien P.The effects of organic template and thickening agent on structure and mechanical properties of titanium foam fabricated by replica impregnation method[J].Materials Science and Engineering A,2015,641:54-61. |
13 | Liu P S, Qing H B, Hou H L.Primary investigation on sound absorption performance of highly porous titanium foams[J].Materials and Design,2015,85:275-281. |
14 | Abhash A, Yadav B N, Pandey A,et al.Partially open cell Ti‑6Al‑2Co ternary alloy foams with a range of size and volume fraction of spacer particle[J].Materials Letters,2021,290:129463. |
15 | Nakaş G I, Dericioglu A F, Bor S.Fatigue behavior of TiNi foams processed by the magnesium space holder technique[J].Journal of the Mechanical Behavior of Biomedical Materials,2011,4(8):2017-2023. |
16 | Bram M, Stiller C, Buchkremer H P,et al.High‑porosity titanium,stainless steel,and superalloy parts[J].Advanced Engineering Materials,2000,2(4):196-199. |
17 | Ipek Nakaş G, Dericioǧlu A F, Bor T.Monotonic and cyclic compressive behavior of superelastic TiNi foams processed by sintering using magnesium space holder technique[J].Materials Science and Engineering A,2013,582:140-146. |
18 | Nakaş G I, Aşık E E, Tunca B,et al.Fatigue and fracture behavior of porous TiNi alloys[J].Materials Science Forum,2014,783/784/785/786:591-596. |
19 | Bafti H, Habibolahzadeh A.Compressive properties of aluminum foam produced by powder‑Carbamide spacer route[J].Materials and Design,2013,52:404-411. |
20 | Bafti H, Habibolahzadeh A.Production of aluminum foam by spherical carbamide space holder technique‑processing parameters[J].Materials and Design,2010,31(9):4122-4129. |
21 | Ibrahim A, Zhang F, Otterstein E,et al.Processing of porous Ti and Ti5Mn foams by spark plasma sintering[J].Materials and Design,2011,32(1):146-153. |
22 | Oh I H, Nomura N, Hanada S.Microstructures and mechanical properties of porous titanium compacts prepared by powder sintering[J].Materials Transactions,2002,43(3):443-446. |
23 | Klemm A, Tiainen H.Highly porous Sr‑doped TiO2 ceramics maintain compressive strength after grain boundary corrosion[J].Journal of the European Ceramic Society,2021,41(11):5721-5727. |
24 | Aşik E E, Bor Ş.Fatigue behavior of Ti‑6Al‑4V foams processed by magnesium space holder technique[J].Materials Science and Engineering A,2015,621:157-165. |
[1] | Meng-qi WANG, Yue LIU, Chun-lin XIAO, Chun-ming LIU. Effect of SiCp Particle Size Grading on the Microstructure and Properties of 55%SiCp/6061Al Composites [J]. Journal of Northeastern University(Natural Science), 2024, 45(6): 802-807. |
[2] | LIU Jun-ru, ZHANG Guo-hua, ZHOU Guo-zhi. Effect of w(Fe)/w(Ni) Ratio on Mo2FeB2 Based Cermet [J]. Journal of Northeastern University(Natural Science), 2023, 44(9): 1269-1278. |
[3] | SHI Ying, WANG Xue-zhi, YU Tian-biao, WANG Wan-shan. Preparation and Grinding Performance of High Magnetic Field Vitrified Bond CBN Grinding Wheel [J]. Journal of Northeastern University Natural Science, 2020, 41(12): 1721-1726. |
[4] | CHEN Chong-feng, XU Tao, HEAP Michael,YANG Tian-hong. Modeling of the Influence of Pore Size and Porosity on Strength Characteristics of Volcanic Rock [J]. Journal of Northeastern University:Natural Science, 2017, 38(5): 725-729. |
[5] | GAO Qiang-jian, WEI Guo, JIANG Xin, SHEN Feng-man. Effect of MgO on Compressive Strength of Reduced Iron Ore Pellet [J]. Journal of Northeastern University Natural Science, 2016, 37(10): 1407-1410. |
[6] | ZHI Ying, TIAN Ye, ZHANG Jinlian, LIU Xianghua. Experimental Research on Microstructure and Properties of TRB After Annealing [J]. Journal of Northeastern University Natural Science, 2014, 35(5): 671-675. |
[7] | GAO Qiangjian, JIANG Xin, WEI Guo, SHEN Fengman. Characterization of Consolidation Degree of Iron Ore Pellet by Mercury Injection Method [J]. Journal of Northeastern University, 2013, 34(6): 832-835. |
[8] | GAO Qiang-jian, WEI Guo, HE Yi-bo, SHEN Feng-man. Effect of MgO on Compressive Strength of Pellet [J]. Journal of Northeastern University:Natural Science, 2013, 34(1): 103-106. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||