Journal of Northeastern University(Natural Science) ›› 2024, Vol. 45 ›› Issue (11): 1621-1628.DOI: 10.12068/j.issn.1005-3026.2024.11.013
• Resources & Civil Engineering • Previous Articles Next Articles
De-fu CHE1, Xiang-xiang SHANG1(), Duo WANG2, Yan-en SUN3
Received:
2023-06-02
Online:
2024-11-15
Published:
2025-02-24
Contact:
Xiang-xiang SHANG
About author:
SHANG Xiang-xiang, E-mail: q2936258514@163.comCLC Number:
De-fu CHE, Xiang-xiang SHANG, Duo WANG, Yan-en SUN. Improved Binocular Stereo Matching Algorithm Based on AD-Census[J]. Journal of Northeastern University(Natural Science), 2024, 45(11): 1621-1628.
代价 | 误差 | ||
---|---|---|---|
Adi | Art | Mot | |
改进SAD代价 | 41.1 | 67.1 | 31.0 |
AD代价 | 71.3 | 70.5 | 48.2 |
Table 1 Comparison of AD cost and improved SAD cost error
代价 | 误差 | ||
---|---|---|---|
Adi | Art | Mot | |
改进SAD代价 | 41.1 | 67.1 | 31.0 |
AD代价 | 71.3 | 70.5 | 48.2 |
代价 | 误差 | ||
---|---|---|---|
Adi | Art | Mot | |
改进Census代价 | 26.6 | 24.4 | 16.1 |
Census代价 | 32.3 | 32.6 | 26.3 |
Table 2 Comparison of Census cost and improved Census cost error
代价 | 误差 | ||
---|---|---|---|
Adi | Art | Mot | |
改进Census代价 | 26.6 | 24.4 | 16.1 |
Census代价 | 32.3 | 32.6 | 26.3 |
10 | 30 | 10 | 3 | 11 | 52 | 1.0 | 11 |
Table 3 Experimental parameters setting
10 | 30 | 10 | 3 | 11 | 52 | 1.0 | 11 |
算法 | 平均误差 | 误差 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Adi | Art | Jad | Mot | MoE | Pia | Pil | Pip | Pla | Plt | PlP | Rec | She | Ted | Vin | ||
本文改进算法 | 7.51 | 1.98 | 4.76 | 10.6 | 2.49 | 3.12 | 5.03 | 14.4 | 8.30 | 5.31 | 12.5 | 5.01 | 3.12 | 20.8 | 1.86 | 13.5 |
AD-Census[ | 9.21 | 8.81 | 5.27 | 21.3 | 4.10 | 5.58 | 6.57 | 31.4 | 8.50 | 7.44 | 24.8 | 5.48 | 3.32 | 24.8 | 3.11 | 14.0 |
MCSC[ | 7.71 | 2.54 | 5.73 | 9.73 | 3.12 | 2.94 | 12.2 | 19.0 | 5.03 | 8.60 | 7.74 | 6.22 | 4.97 | 26.4 | 2.01 | 22.2 |
SRM[ | 7.75 | 1.89 | 5.94 | 11.5 | 2.58 | 2.71 | 10.6 | 17.5 | 4.03 | 10.5 | 6.30 | 5.77 | 5.89 | 30.5 | 2.99 | 21.2 |
INTS[ | 9.31 | 4.31 | 4.88 | 12.3 | 3.47 | 3.20 | 11.2 | 20.2 | 4.92 | 10.9 | 15.5 | 9.25 | 5.58 | 34.1 | 4.14 | 25.7 |
TMAP[ | 10.7 | 4.62 | 7.24 | 15.8 | 3.93 | 3.73 | 11.6 | 21.0 | 6.04 | 12.9 | 26.0 | 9.18 | 6.44 | 35.7 | 4.22 | 26.2 |
LPSM[ | 11.1 | 4.09 | 10.1 | 17.7 | 6.89 | 6.14 | 11.1 | 24.8 | 9.88 | 13.2 | 20.8 | 9.83 | 6.78 | 22.7 | 4.56 | 22.4 |
SGM-RVC[ | 12.2 | 6.13 | 6.13 | 15.3 | 5.13 | 4.30 | 13.1 | 25.4 | 8.22 | 14.1 | 39.8 | 10.1 | 6.64 | 40.5 | 2.67 | 28.6 |
ADSG[ | 13.9 | 7.13 | 13.2 | 16.1 | 6.83 | 5.91 | 17.9 | 26.7 | 10.1 | 17.6 | 27.3 | 12.5 | 9.12 | 38.6 | 6.22 | 27.5 |
Table 4 Mismatching rates of different algorithms in the unshaded region of Middlebury data set
算法 | 平均误差 | 误差 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Adi | Art | Jad | Mot | MoE | Pia | Pil | Pip | Pla | Plt | PlP | Rec | She | Ted | Vin | ||
本文改进算法 | 7.51 | 1.98 | 4.76 | 10.6 | 2.49 | 3.12 | 5.03 | 14.4 | 8.30 | 5.31 | 12.5 | 5.01 | 3.12 | 20.8 | 1.86 | 13.5 |
AD-Census[ | 9.21 | 8.81 | 5.27 | 21.3 | 4.10 | 5.58 | 6.57 | 31.4 | 8.50 | 7.44 | 24.8 | 5.48 | 3.32 | 24.8 | 3.11 | 14.0 |
MCSC[ | 7.71 | 2.54 | 5.73 | 9.73 | 3.12 | 2.94 | 12.2 | 19.0 | 5.03 | 8.60 | 7.74 | 6.22 | 4.97 | 26.4 | 2.01 | 22.2 |
SRM[ | 7.75 | 1.89 | 5.94 | 11.5 | 2.58 | 2.71 | 10.6 | 17.5 | 4.03 | 10.5 | 6.30 | 5.77 | 5.89 | 30.5 | 2.99 | 21.2 |
INTS[ | 9.31 | 4.31 | 4.88 | 12.3 | 3.47 | 3.20 | 11.2 | 20.2 | 4.92 | 10.9 | 15.5 | 9.25 | 5.58 | 34.1 | 4.14 | 25.7 |
TMAP[ | 10.7 | 4.62 | 7.24 | 15.8 | 3.93 | 3.73 | 11.6 | 21.0 | 6.04 | 12.9 | 26.0 | 9.18 | 6.44 | 35.7 | 4.22 | 26.2 |
LPSM[ | 11.1 | 4.09 | 10.1 | 17.7 | 6.89 | 6.14 | 11.1 | 24.8 | 9.88 | 13.2 | 20.8 | 9.83 | 6.78 | 22.7 | 4.56 | 22.4 |
SGM-RVC[ | 12.2 | 6.13 | 6.13 | 15.3 | 5.13 | 4.30 | 13.1 | 25.4 | 8.22 | 14.1 | 39.8 | 10.1 | 6.64 | 40.5 | 2.67 | 28.6 |
ADSG[ | 13.9 | 7.13 | 13.2 | 16.1 | 6.83 | 5.91 | 17.9 | 26.7 | 10.1 | 17.6 | 27.3 | 12.5 | 9.12 | 38.6 | 6.22 | 27.5 |
分辨率/像素 | tGPU/ms | tCPU/ms | 加速倍率 |
---|---|---|---|
450×375 | 30 | 4 012 | 133 |
718×496 | 89 | 5 660 | 71 |
800×552 | 124 | 7 270 | 59 |
900×621 | 175 | 9 710 | 55 |
Table 5 Comparison of running speed under
分辨率/像素 | tGPU/ms | tCPU/ms | 加速倍率 |
---|---|---|---|
450×375 | 30 | 4 012 | 133 |
718×496 | 89 | 5 660 | 71 |
800×552 | 124 | 7 270 | 59 |
900×621 | 175 | 9 710 | 55 |
1 | Binh P, Nguyen Q.A review of stereo‑photogrammetry method for 3-D reconstruction in computer vision[C]//Proceedings of the 19th International Symposium on Communications and Information Technologies.Piscataway:IEEE,2019:138-143. |
2 | Mei X, Sun X, Zhou M C,et al.On building an accurate stereo matching system on graphics hardware[C]//2011 IEEE International Conference on Computer Vision Workshops.Barcelona,2011:467-474. |
3 | Huang C H, Yang J F.Improved quadruple sparse census transform and adaptive multi‑shape aggregation algorithms for precise stereo matching[J].IET Computer Vision,2021,2(16):159-179. |
4 | Zhang L, Zhang K, Chang T S,et al.Real‑time high‑definition stereo matching on FPGA[C]//ACM/SIGDA International Symposium on Field Programmable Gate Arrays.Monterey,2011:55-64. |
5 | Cheng X J, Zhao Y, Yang W B,et al.LESC:superpixel cut‑based local expansion for accurate stereo matching[J].IET Image Processing,2022,16(2):470-484. |
6 | Haq Q M U, Lin C H, Ruan S J,et al.An edge‑aware based adaptive multi‑feature set extraction for stereo matching of binocular images[J].Journal of Ambient Intelligence and Humanized Computing,2021,13(4):1-15. |
7 | 张浩东,宋嘉菲,张广慧.边缘引导特征融合和代价聚合的立体匹配算法[J].计算机工程与应用,2022,58(21):182-188. |
Zhang Hao‑dong, Song Jia‑fei, Zhang Guang‑hui.Stereo matching network based on edge‑guided feature fusion and cost aggregation[J].Computer Engineering and Applications,2022,58(21):182-188. | |
8 | Scharstein D, Szeliski R.A taxonomy and evaluation of dense two‑frame stereo correspondence algorithms[J].International Journal of Computer Vision,2002,47(1):7-42. |
9 | Scharstein D, Szeliski R.High‑accuracy stereo depth maps using structured light[C]//2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Madison,2003:195-202. |
10 | Scharstein D, Pal C.Learning conditional random fields for stereo[C]//2007 IEEE Conference on Computer Vision and Pattern Recognition.Minneapolis,2007:1-8. |
11 | Hirschmuller H, Scharstein D.Evaluation of cost functions for stereo matching[C]//2007 IEEE Conference on Computer Vision and Pattern Recognition.Minneapolis,2007:1-8. |
12 | Scharstein D, Hirschmüller H, Kitajima Y,et al.High‑resolution stereo datasets with subpixel‑accurate ground truth[C]//German Conference on Pattern Recognition.Cham:Springer International Publishing,2014:31-42. |
13 | Yang M L, Lyu X B.Learning both matching cost and smoothness constraint for stereo matching[J].Neurocomputing,2018,314:234-241. |
14 | Okae J, Du J, Hu Y M.Robust statistical approach to stereo disparity maps denoising and refinement[J].Control Theory and Technology,2020,18(4):348-361. |
15 | Huang X, Zhang Y J, Yue Z X.Image‑guided non‑local dense matching with three‑steps optimization[J].ISPRS Annals of Photogrammetry,Remote Sensing and Spatial Information Sciences,2016,3(3):67-74. |
16 | Psota E T, Kowalczuk J, Mittek M,et al.MAP disparity estimation using hidden Markov trees[C]//2015 IEEE International Conference on Computer Vision(ICCV).Santiago,2015:2219-2227. |
17 | Xu C L, Wu C D, Qu D K,et al.Accurate and efficient stereo matching by log‑angle and pyramid‑tree[J].IEEE Transactions on Circuits and Systems for Video Technology,2020,31(10):4007-4019. |
18 | Hirschmuller H.Stereo processing by semiglobal matching and mutual information[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,30(2):328-341. |
19 | Liu H, Zhang H L, Nie X X,et al.Stereo matching algorithm based on two‑phase adaptive optimization of AD-census and gradient fusion[C]//2021 IEEE International Conference on Real-Time Computing and Robotics(RCAR).Xining,2021:726-731. |
[1] | PANG Yan-wei, SU Chang, LONG Tao. Adaptive Multi-scale Cost Volume Construction and Aggregation for Stereo Matching [J]. Journal of Northeastern University(Natural Science), 2023, 44(4): 457-468. |
[2] | ZHANG Zhi-min, QIAO Jian-zhong, LIN Shu-kuan, WANG Pin-he. A View Reconstruction Method Based on Deep Network [J]. Journal of Northeastern University Natural Science, 2020, 41(8): 1065-1069. |
[3] | LI Jing-jiao, MA Li, WANG Ai-xia, MA Shuai. Stereo Matching Algorithm Based on Improved Patchmatch and Slice Sampling Particle Belief Propagation [J]. Journal of Northeastern University Natural Science, 2016, 37(5): 609-613. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||