[1] |
Gaffurini M, Bellagente P, Depari A, et al. Virtual PLC in industrial edge platform: performance evaluation of supervision and control communication[J]. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 3511810.
|
[2] |
柴天佑. 工业人工智能与工业互联网协同实现生产过程智能化及其未来展望[J]. 控制工程, 2023, 30(8): 1378-1388.
|
|
Chai Tian-you. Industrial AI and industrial Internet collaboratively achieving production process intelligence and its future perspectives[J]. Control Engineering of China, 2023, 30(8): 1378-1388.
|
[3] |
Perez D J, Waltl J, Prenzel L, et al. How real (time) are virtual PLCs?[C]//2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA). Stuttgart: IEEE, 2022: 1-8.
|
[4] |
Cruz T, Simões P, Monteiro E. Virtualizing programmable logic controllers: toward a convergent approach[J]. IEEE Embedded Systems Letters, 2016, 8(4): 69-72.
|
[5] |
Hegazy T, Hefeeda M. Industrial automation as a cloud service[J]. IEEE Transactions on Parallel and Distributed Systems, 2014, 26(10): 2750-2763.
|
[6] |
Xia Y Q, Zhang Y, Dai L, et al. A brief survey on recent advances in cloud control systems[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(7): 3108-3114.
|
[7] |
Xia Y Q. Cloud control systems[J]. IEEE/CAA Journal of Automatica Sinica, 2015, 2(2): 134-142.
|
[8] |
Shi W S, Cao J, Zhang Q, et al. Edge computing: vision and challenges[J]. IEEE Internet of Things Journal, 2016, 3(5): 637-646.
|
[9] |
Dai W B, Nishi H, Vyatkin V, et al. Industrial edge computing: enabling embedded intelligence[J]. IEEE Industrial Electronics Magazine, 2019, 13(4): 48-56.
|
[10] |
Langner R. To kill a centrifugue: a technical analysis of what Stuxnet’s creators tried to achieve[EB/OL]. (2013-12-15)[2025-06-10]. .
|
[11] |
Reeser J, Jankowski T, Kemper G M. Maintaining HMI and SCADA systems through computer virtualization[J]. IEEE Transactions on Industry Applications, 2015, 51(3): 2558-2564.
|
[12] |
Sollfrank M, Loch F, Denteneer S, et al. Evaluating docker for lightweight virtualization of distributed and time-sensitive applications in industrial automation[J]. IEEE Transactions on Industrial Informatics, 2020, 17(5): 3566-3576.
|
[13] |
Taibi D, Lenarduzzi V, Pahl C. Processes, motivations, and issues for migrating to microservices architectures: an empirical investigation[J]. IEEE Cloud Computing, 2017, 4(5): 22-32.
|
[14] |
Sarkar S, Vashi G, Abdulla P P. Towards transforming an industrial automation system from monolithic to microservices[C]//2018 IEEE 23rd International Conference on Emerging Technologies and Factory Automation (ETFA). Turin: IEEE, 2018: 1256-1259.
|
[15] |
Ferrari P, Sisinni E, Bellagente P, et al. On the use of LoRaWAN and cloud platforms for diversification of mobility-as-a-service infrastructure in smart city scenarios[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 5501109.
|
[16] |
Gaffurini M, Brandão D, Rinaldi S, et al. Characterizing the real-time communication performance of virtual PLC in industrial edge platform[J]. IEEE Open Journal of Instrumentation and Measurement, 2025, 4: 5500311.
|
[17] |
Vyatkin V. IEC 61499 as enabler of distributed and intelligent automation: state-of-the-art review[J]. IEEE Transactions on Industrial Informatics, 2011, 7(4): 768-781.
|
[18] |
Lyu G L, Brennan R W. Towards IEC 61499-based distributed intelligent automation: a literature review[J]. IEEE Transactions on Industrial Informatics, 2020, 17(4): 2295-2306.
|
[19] |
Dai W B, Zhang Y Y, Kong L B, et al. Design of industrial edge applications based on IEC 61499 microservices and containers[J]. IEEE Transactions on Industrial Informatics, 2022, 19(7): 7925-7935.
|
[20] |
Jin J, Pang Z B, Kua J, et al. Cloud-fog automation: the new paradigm towards autonomous industrial cyber-physical systems[J/OL]. IEEE Journal on Selected Areas in Communications, 2025: 3574587[2025-06-10]. .
|
[21] |
Lyu H H, Yan J, Zhang J L, et al. Cloud-fog automation: heterogenous applications over new-generation infrastructure of virtualized computing and converged networks[J]. IEEE Industrial Electronics Magazine, 2024, 18(4): 30-42.
|
[22] |
Xia C Q, Liu Y Q, Xia T H, et al. Control-communication-computing co-design in cyber-physical production system[J]. IEEE Internet of Things Journal, 2023, 10(6): 5194-5204.
|
[23] |
Lyu H H, Pang Z B, Bengtsson A, et al. Latency-aware control for wireless cloud-fog automation: framework and case study[J]. IEEE Transactions on Automation Science and Engineering, 2024, 22: 5400-5410.
|
[24] |
Bhimavarapu K, Pang Z B, Dobrijevic O, et al. Unobtrusive, accurate, and live measurements of network latency and reliability for time-critical Internet of Things[J]. IEEE Internet of Things Magazine, 2022, 5(3): 38-43.
|
[25] |
柴天佑,丁进良. 流程工业智能优化制造[J]. 中国工程科学,2018,20(4): 51-58.
|
|
Chai Tian-you, Ding Jin-liang. Smart and optimal manufacturing for process industry[J]. Strategic Study of CAE, 2018, 20(4): 51-58.
|
[26] |
柴天佑,刘强,丁进良,等.工业互联网驱动的流程工业智能优化制造新模式研究展望[J].中国科学(技术科学),2022,52(1):14-25.
|
|
Chai Tian-you, Liu Qiang, Ding Jin-liang, et al. Perspectives on industrial-Internet-driven intelligent optimized manufacturing mode for process industries[J]. Scientia Sinica(Technologica), 2022, 52(1):14-25.
|
[27] |
柴天佑,周正,郑锐,等. 端边云协同的PID整定智能系统[J]. 自动化学报, 2023, 49(3): 514-527.
|
|
Chai Tian-you, Zhou Zheng, Zheng Rui, et al. PID tuning intelligent system based on end-edge-cloud collaboration[J]. Acta Automatica Sinica, 2023, 49(3): 514-527.
|
[28] |
Chai T Y, Xing F X, Zheng R, et al. An anti-latency intelligent control for 5G wireless networks based on end-edge-cloud collaboration[J/OL]. IEEE Journal on Selected Areas in Communications, 2025: 3574593 [2025-06-10]. .
|
[29] |
Chai T Y, Zhou Z, Cheng S Y, et al. Industrial metaverse-based intelligent PID optimal tuning system for complex industrial processes[J]. IEEE Transactions on Cybernetics, 2024, 54(11): 6458-6470.
|
[30] |
Carlson W B. A history of control engineering, 1800—1930 Stuart Bennett[J]. Technology and Culture, 1982, 23(4): 657-658.
|
[31] |
Cruiser E. “Mechanical mike” (the evolution of the modern airplane autopilot)[EB/OL]. (2013-06-24) [2025-06-10]. .
|
[32] |
Mayr O. Zur frühgeschichte der technischen regelungen[M]. Cambridge, Massachusetts: MIT Press, 1970: 272-274.
|
[33] |
Morley D. Programmable controllers: how it all began[M]. Downers Grove : WTWH Media, LLC, 2008:82-86.
|
[34] |
Strothman J. M&C technology history more than a century of measuring and controlling industrial processes[J]. Intech-International Journal for Measurement Control, 1995,42(6): 52-78.
|
[35] |
Guo L. Feedback and uncertainty: some basic problems and results[J]. Annual Reviews in Control, 2020, 49: 27-36.
|
[36] |
Samad T. A survey on industry impact and challenges thereof [technical activities][J]. IEEE Control Systems Magazine, 2017, 37(1): 17-18.
|
[37] |
Borase R P, Maghade D K, Sondkar S Y, et al. A review of PID control, tuning methods and applications[J]. International Journal of Dynamics and Control, 2021, 9(2): 818-827.
|
[38] |
Aström K, Hägglund T. PID controllers theory, design and tuning [M].2nd ed. Research Triangle Park: ISA, 1995:64-69.
|
[39] |
柴天佑,郑锐,邢方新,等,工业过程控制智能化及未来发展展望 [J].中国科学(信息科学),2025,55(7):1555-1570.
|
|
Chai Tian-you, Zheng Rui, Xing Fang-xin, et al. Intelligence for industrial process control: development and prospects[J]. Scientia Sinica(Informationis),2025,55(7):1555-1570.
|
[40] |
Nie Z Y, Li Z Y, Wang Q G, et al. A unifying Ziegler-Nichols tuning method based on active disturbance rejection[J]. International Journal of Robust and Nonlinear Control, 2022, 32(18): 9525-9541.
|
[41] |
刘宁,柴天佑. PID控制器参数的优化整定方法[J]. 自动化学报,2023,49(11): 2272-2285.
|
|
Liu Ning, Chai Tian-you. An optimal tuning method of PID controller parameters[J]. Acta Automatica Sinica, 2023, 49(11): 2272-2285.
|