Journal of Northeastern University(Natural Science) ›› 2025, Vol. 46 ›› Issue (7): 37-48.DOI: 10.12068/j.issn.1005-3026.2025.20240164
• Industrial Intelligent Theory and Methods • Previous Articles Next Articles
Fan-li MENG(), Shu-chang LI, Hao WANG, Zhen-yu YUAN
Received:
2024-09-06
Online:
2025-07-15
Published:
2025-09-24
Contact:
Fan-li MENG
CLC Number:
Fan-li MENG, Shu-chang LI, Hao WANG, Zhen-yu YUAN. Intelligent Identification Method of Industrial Mixed Gases Based on ConvGRU Fusion Attention Mechanism[J]. Journal of Northeastern University(Natural Science), 2025, 46(7): 37-48.
模块名称 | 层次结构 | 卷积核 | 输入特征量 | 步长 | 填充 | 输出特征量 | droput |
---|---|---|---|---|---|---|---|
ConvGRU | 32个ConvGRU单元 | 3×3 | 3×3 | 1 | 0.1 | ||
64个ConvGRU单元 | 3×3 | 3×3 | 1 | 0.1 | |||
Attention | 一维平均池化层 | 1 | 1 | 1 | 0 | ||
一维最大池化层 | 1 | 1 | 1 | 0 | |||
线性层 | 64 | 4 | |||||
激活函数层 | ReLu函数 | ||||||
线性层 | 4 | 64 | |||||
激活函数层 | ReLu函数 | ||||||
输出 | 一维平均池化层 | 16 | 16 | 1 | 0 | ||
线性层 | 1 024 | 300 | |||||
线性层 | 300 | 3(类别)/2(浓度) | |||||
激活函数层 | ReLu函数 |
Table 1 ConvGRUAttention model parameters
模块名称 | 层次结构 | 卷积核 | 输入特征量 | 步长 | 填充 | 输出特征量 | droput |
---|---|---|---|---|---|---|---|
ConvGRU | 32个ConvGRU单元 | 3×3 | 3×3 | 1 | 0.1 | ||
64个ConvGRU单元 | 3×3 | 3×3 | 1 | 0.1 | |||
Attention | 一维平均池化层 | 1 | 1 | 1 | 0 | ||
一维最大池化层 | 1 | 1 | 1 | 0 | |||
线性层 | 64 | 4 | |||||
激活函数层 | ReLu函数 | ||||||
线性层 | 4 | 64 | |||||
激活函数层 | ReLu函数 | ||||||
输出 | 一维平均池化层 | 16 | 16 | 1 | 0 | ||
线性层 | 1 024 | 300 | |||||
线性层 | 300 | 3(类别)/2(浓度) | |||||
激活函数层 | ReLu函数 |
模型- 气体 | 准确率/% | |||||
---|---|---|---|---|---|---|
IMF1 | IMF2 | IMF3 | IMF4 | IMF5 | IMF6 | |
G-T | 71.88 | 68.25 | 44.12 | 7.12 | 2.12 | 1.12 |
G-X | 75.12 | 80.88 | 24.38 | 0.00 | 0.00 | 4.25 |
G-TX | 90.72 | 90.00 | 96.78 | 9.81 | 100.00 | 98.41 |
CG-T | 94.75 | 96.44 | 38.44 | 15.50 | 39.38 | 48.12 |
CG-X | 86.22 | 86.88 | 39.75 | 0.00 | 5.81 | 71.69 |
CG-TX | 95.30 | 95.70 | 95.38 | 97.48 | 91.33 | 88.16 |
CGA-T | 92.31 | 96.81 | 44.56 | 12.75 | 49.31 | 41.44 |
CGA-X | 86.25 | 87.62 | 47.44 | 0.00 | 39.56 | 71.00 |
CGA-TX | 94.77 | 96.83 | 95.36 | 97.89 | 92.86 | 89.52 |
Table 2 Ablation experiment results of qualitative
模型- 气体 | 准确率/% | |||||
---|---|---|---|---|---|---|
IMF1 | IMF2 | IMF3 | IMF4 | IMF5 | IMF6 | |
G-T | 71.88 | 68.25 | 44.12 | 7.12 | 2.12 | 1.12 |
G-X | 75.12 | 80.88 | 24.38 | 0.00 | 0.00 | 4.25 |
G-TX | 90.72 | 90.00 | 96.78 | 9.81 | 100.00 | 98.41 |
CG-T | 94.75 | 96.44 | 38.44 | 15.50 | 39.38 | 48.12 |
CG-X | 86.22 | 86.88 | 39.75 | 0.00 | 5.81 | 71.69 |
CG-TX | 95.30 | 95.70 | 95.38 | 97.48 | 91.33 | 88.16 |
CGA-T | 92.31 | 96.81 | 44.56 | 12.75 | 49.31 | 41.44 |
CGA-X | 86.25 | 87.62 | 47.44 | 0.00 | 39.56 | 71.00 |
CGA-TX | 94.77 | 96.83 | 95.36 | 97.89 | 92.86 | 89.52 |
模型 | 准确率/% | Kappa值 | ||
---|---|---|---|---|
甲苯 | 二甲苯 | 甲苯-二甲苯 | ||
SVM | 87.50 | 87.50 | 90.62 | 0.796 |
CNN | 70.88 | 85.38 | 96.59 | 0.799 |
GRU | 80.00 | 76.12 | 94.03 | 0.768 |
TCN | 87.50 | 62.50 | 93.75 | 0.750 |
EWTGRU | 72.25 | 76.88 | 91.03 | 0.708 |
ConvGRU | 96.00 | 85.50 | 97.06 | 0.898 |
Ours | 100.00 | 100.00 | 100.00 | 1.000 |
Table 3 Comparative qualitative results of each
模型 | 准确率/% | Kappa值 | ||
---|---|---|---|---|
甲苯 | 二甲苯 | 甲苯-二甲苯 | ||
SVM | 87.50 | 87.50 | 90.62 | 0.796 |
CNN | 70.88 | 85.38 | 96.59 | 0.799 |
GRU | 80.00 | 76.12 | 94.03 | 0.768 |
TCN | 87.50 | 62.50 | 93.75 | 0.750 |
EWTGRU | 72.25 | 76.88 | 91.03 | 0.708 |
ConvGRU | 96.00 | 85.50 | 97.06 | 0.898 |
Ours | 100.00 | 100.00 | 100.00 | 1.000 |
模型 | MAE(平均绝对误差) | RMSE(均方根误差) | ||||
---|---|---|---|---|---|---|
甲苯 | 二甲苯 | 甲苯-二甲苯 | 甲苯 | 二甲苯 | 甲苯-二甲苯 | |
SVM | 7.9 | 6.6 | 7.2 | 8.8 | 7.5 | 11.6 |
CNN | 9.6 | 14.6 | 12.1 | 13.3 | 18.1 | 22.5 |
GRU | 10.6 | 7.0 | 8.8 | 12.8 | 8.4 | 10.8 |
TCN | 19.0 | 7.5 | 13.3 | 23.8 | 9.4 | 18.1 |
EWTGRU | 8.3 | 4.9 | 6.6 | 10.1 | 7.5 | 8.9 |
ConvGRU | 3.9 | 2.6 | 3.3 | 5.4 | 3.2 | 4.5 |
Ours | 2.3 | 2.3 | 2.3 | 3.6 | 3.0 | 3.3 |
Table 4 Comparative quantitative results of each detection method
模型 | MAE(平均绝对误差) | RMSE(均方根误差) | ||||
---|---|---|---|---|---|---|
甲苯 | 二甲苯 | 甲苯-二甲苯 | 甲苯 | 二甲苯 | 甲苯-二甲苯 | |
SVM | 7.9 | 6.6 | 7.2 | 8.8 | 7.5 | 11.6 |
CNN | 9.6 | 14.6 | 12.1 | 13.3 | 18.1 | 22.5 |
GRU | 10.6 | 7.0 | 8.8 | 12.8 | 8.4 | 10.8 |
TCN | 19.0 | 7.5 | 13.3 | 23.8 | 9.4 | 18.1 |
EWTGRU | 8.3 | 4.9 | 6.6 | 10.1 | 7.5 | 8.9 |
ConvGRU | 3.9 | 2.6 | 3.3 | 5.4 | 3.2 | 4.5 |
Ours | 2.3 | 2.3 | 2.3 | 3.6 | 3.0 | 3.3 |
[1] | Elansky N F, Ponomarev N A, Verevkin Y M. Air quality and pollutant emissions in the Moscow megacity in 2005—2014[J]. Atmospheric Environment, 2018, 175: 54-64. |
[2] | Afrasiabi S, Darghlou M F, Mohammadi Y, et al. Effects of short and long-term exposure to benzene, toluene, ethylbenzene, and xylenes (BTEX) in indoor environment air on human health: a systematic review and meta-analysis[J]. Journal of Air Pollution and Health, 2024, 9(4): 551-566. |
[3] | Soltanpour Z, Mohammadian Y, Fakhri Y. The concentration of benzene, toluene, ethylbenzene, and xylene in ambient air of the gas stations in Iran: a systematic review and probabilistic health risk assessment[J]. Toxicology and Industrial Health, 2021, 37(3): 134-141. |
[4] | Edokpolo B, Yu Q J, Connell D. Health risk assessment of ambient air concentrations of benzene, toluene and xylene (BTX) in service station environments[J]. International Journal of Environmental Research and Public Health, 2014, 11(6): 6354-6374. |
[5] | Litra D, Chiriac M, Ababii N, et al. Acetone sensors based on Al-coated and Ni-doped copper oxide nanocrystalline thin films[J]. Sensors, 2024, 24(20): 6550. |
[6] | Huang L Q, Wu X, Li X B, et al. Influence of sensor array on MS/AE source location accuracy in rock mass[J]. Transactions of Nonferrous Metals Society of China, 2023, 33(1): 254-274. |
[7] | Ji H Y, Mi C J, Yuan Z Y, et al. Multicomponent gas detection method via dynamic temperature modulation measurements based on semiconductor gas sensor[J]. IEEE Transactions on Industrial Electronics, 2023, 70(6): 6395-6404. |
[8] | Liu F, Wu H Y, Zhao Y G, et al. Mapping high resolution national soil information grids of China[J]. Science Bulletin, 2022, 67(3): 328-340. |
[9] | Ji H Y, Yuan Z Y, Zhu H M, et al. Dynamic temperature modulation measurement of VOC gases based on SnO2 gas sensor[J]. IEEE Sensors Journal, 2022, 22(15): 14708-14716. |
[10] | Gudiksen M S, Lauhon L J, Wang J F, et al. Growth of nanowire superlattice structures for nanoscale photonics and electronics[J]. Nature, 2002, 415(6872): 617-620. |
[11] | Rao Y J. In-fibre Bragg grating sensors[J]. Measurement Science and Technology, 1997, 8(4): 355-375. |
[12] | Le V H D. Method and apparatus for operating a gas sensor: US 3906473[P]. 1975-09-16. |
[13] | Wu Z, Zhang H, Ji H, et al. Novel combined waveform temperature modulation method of NiO-In2O3 based gas sensor for measuring and identifying VOC gases[J]. Journal of Alloys and Compounds, 2022, 918: 165510. |
[14] | Lee A P, Reedy B J. Temperature modulation in semiconductor gas sensing[J]. Sensors and Actuators B: Chemical, 1999, 60(1): 35-42. |
[15] | Cai L X, Miao G Y, Li G, et al. A temperature-modulated gas sensor based on CdO-decorated porous ZnO nanobelts for the recognizable detection of ethanol, propanol, and isopropanol[J]. IEEE Sensors Journal, 2021, 21(22): 25590-25596. |
[16] | Nakata S, Takahara N. Distinction of gaseous mixtures based on different cyclic temperature modulations[J]. Sensors and Actuators B: Chemical, 2022, 359: 131615. |
[17] | Kadlec P, Gabrys B, Strandt S. Data-driven soft sensors in the process industry[J]. Computers & Chemical Engineering, 2009, 33(4): 795-814. |
[18] | Villa A, Benediktsson J A, Chanussot J, et al. Hyperspectral image classification with independent component discriminant analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(12): 4865-4876. |
[19] | Ji H Y, Liu Y, Zhang R Z, et al. Detection and recognition of toluene and butanone in mixture based on SnO2 sensor via dynamic transient and steady-state response analysis in jump heating voltage mode[J]. Sensors and Actuators B: Chemical, 2023, 376: 132969. |
[20] | Khurshid A, Pani A K. An integrated approach combining randomized kernel PCA, Gaussian mixture modeling and ICA for fault detection in non-linear processes[J]. Measurement Science and Technology, 2024, 35(7): 076208. |
[21] | Ji H Y, Zhu H M, Zhang R Z, et al. Semiconductor sensor virtual array: gas detection strategy in Internet of Things to suppress humidity interference[J]. IEEE Internet of Things Journal, 2024, 11(3): 4934-4941. |
[22] | Zhang S W, Yuan Z Y, Zhang W, et al. Strategy to expedite gas sensor calibration based on cyclic temperature operation and data augmentation[J]. Sensors and Actuators B: Chemical, 2024, 416: 136060. |
[23] | Daubechies I. The wavelet transform, time-frequency localization and signal analysis[J]. IEEE Transactions on Information Theory, 1990, 36(5): 961-1005. |
[24] | Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London,Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995. |
[25] | Gilles J. Empirical wavelet transform[J]. IEEE Transactions on Signal Processing, 2013, 61(16): 3999-4010. |
[26] | Hui A L, Yu J, Lu W Q. Research on rotor fault diagnosis technology of three-phase asynchronous motor based on NA-MEMD mutual information and SVM[J]. Measurement and Control, 2025, 58(1): 110-118. |
[27] | Liu T, Li J, Cai X F, et al. A time-frequency analysis algorithm for ultrasonic waves generating from a debonding defect by using empirical wavelet transform[J]. Applied Acoustics, 2018, 131: 16-27. |
[28] | Al-Musaylh M S, Al-Daffaie K, Prasad R. Gas consumption demand forecasting with empirical wavelet transform based machine learning model: a case study[J]. International Journal of Energy Research, 2021, 45(10): 15124-15138. |
[29] | Cao X G, Guo X Y, Duan Y, et al. Health status recognition method for rotating machinery based on multi-scale hybrid features and improved convolutional neural networks[J]. Sensors, 2023, 23(12): 5688. |
[30] | de Bruin T, Verbert K, Babuška R. Railway track circuit fault diagnosis using recurrent neural networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 28(3): 523-533. |
[31] | Liu L Z, Hu C X, Ou T S, et al. Selective detection of mixtures via a single nonselective sensor: making the unworkable sensor workable by machine learning[J]. Advanced Intelligent Systems, 2023, 5(1): 2200136. |
[32] | Vlachos D, Avaritsiotis J. Fuzzy neural networks for gas sensing[J]. Sensors and Actuators B: Chemical, 1996, 33(1/2/3): 77-82. |
[33] | Karagulian F, Barbiere M, Kotsev A, et al. Review of the performance of low-cost sensors for air quality monitoring[J]. Atmosphere, 2019, 10(9): 506. |
[34] | Yang M, Li J, Liu J C. Forecast model for gas well productivity based on PSO and SVM[J]. Applied Mechanics and Materials, 2011, 71/72/73/74/75/76/77/78: 1915-1919. |
[35] | Kang M G, Cho I, Park J, et al. High accuracy real-time multi-gas identification by a batch-uniform gas sensor array and deep learning algorithm[J]. ACS Sensors, 2022, 7(2): 430-440. |
[36] | Jia P T, Liu H D, Wang S J, et al. Research on a mine gas concentration forecasting model based on a GRU network[J]. IEEE Access, 2020, 8: 38023-38031. |
[37] | Ma X, Wu F, Yan J, et al. TF-TCN: a time-frequency combined gas concentration prediction model for E-nose data[J]. Sensors and Actuators A: Physical, 2024, 376: 115654. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||